Characterization of kinetics of human cytochrome P450s involved in bioactivation of flucloxacillin: inhibition of CYP3A-catalysed hydroxylation by sulfaphenazole.
Ontology highlight
ABSTRACT: BACKGROUND AND PURPOSE:The aim of this study was to characterize the human cytochrome P450s (CYPs) involved in oxidative bioactivation of flucloxacillin to 5-hydroxymethyl flucloxacillin, a metabolite with high cytotoxicity towards biliary epithelial cells. EXPERIMENTAL APPROACH:The CYPs involved in hydroxylation of flucloxacillin were characterized using recombinant human CYPs, pooled liver microsomes in the presence of CYP-specific inhibitors and by correlation analysis using a panel of liver microsomes from 16 donors. KEY RESULTS:Recombinant CYPs showing the highest specific activity were CYP3A4, CYP3A7 and to lower extent CYP2C9 and CTP2C8. Michaelis-Menten enzyme kinetics were determined for pooled human liver microsomes, recombinant CYP3A4, CYP3A7 and CYP2C9. Surprisingly, sulfaphenazole appeared to be a potent inhibitor of 5'-hydroxylation of flucloxacillin by both recombinant CYP3A4 and CYP3A7. CONCLUSIONS AND IMPLICATIONS:The combined results show that the 5'-hydroxylation of flucloxacillin is primarily catalysed by CYP3A4, CYP3A7 and CYP2C9. The large variability of the hepatic expression of these enzymes could affect the formation of 5'-hydroxymethyl flucloxacillin, which may determine the differences in susceptibility to flucloxacillin-induced liver injury. Additionally, the strong inhibition in CYP3A-catalysed flucloxacillin metabolism by sulfaphenazole suggests that unanticipated drug-drug interactions could occur with coadministered drugs.
SUBMITTER: Dekker SJ
PROVIDER: S-EPMC6329626 | biostudies-literature | 2019 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA