Apatinib inhibits tumor growth and angiogenesis in PNET models.
Ontology highlight
ABSTRACT: Angiogenesis has a pivotal role in the growth and metastasis of pancreatic neuroendocrine tumors (PNETs). Apatinib inhibits angiogenesis as a highly selective KDR inhibitor and has been used to treat advanced gastric cancer and malignancies in clinical settings. However, the efficacy of apatinib in PNETs remains unclear. The aim of this study was to compare the antitumor efficacy of apatinib with that of the standard PNET drug sunitinib in our subcutaneous and liver metastasis models of insulinoma and non-functional PNET. Our results revealed that apatinib had a generally comparable or even superior antitumor effect to that of sunitinib on primary PNET, and it inhibited angiogenesis without directly causing tumor cell cytotoxicity. Apatinib inhibited the tumor in a dose-dependent manner, and the high dose was well tolerated in mice. We also found that the apatinib efficacy in liver metastasis models was cell-type (disease) selective. Although apatinib efficiently inhibited INR1G9-represented non-functional PNET liver metastasis, it led to the emergence of a hypoxic area in the INS-1-represented insulinoma and promoted liver metastasis. Our study demonstrated that apatinib has promise for clinical applications in certain malignant PNETs, and the application of anti-angiogenesis drugs to benign insulinomas may require careful consideration.
SUBMITTER: Wu S
PROVIDER: S-EPMC6330719 | biostudies-literature | 2019 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA