Unknown

Dataset Information

0

Characterizing a mouse model for evaluation of countermeasures against hydrogen sulfide-induced neurotoxicity and neurological sequelae.


ABSTRACT: Hydrogen sulfide (H2 S) is a highly neurotoxic gas. It is the second most common cause of gas-induced deaths. Beyond mortality, surviving victims of acute exposure may suffer long-term neurological sequelae. There is a need to develop countermeasures against H2 S poisoning. However, no translational animal model of H2 S-induced neurological sequelae exists. Here, we describe a novel mouse model of H2 S-induced neurotoxicity for translational research. In paradigm I, C57/BL6 mice were exposed to 765 ppm H2 S for 40 min on day 1, followed by 15-min daily exposures for periods ranging from 1 to 6 days. In paradigm II, mice were exposed once to 1000 ppm H2 S for 60 minutes. Mice were assessed for behavioral, neurochemical, biochemical, and histopathological changes. H2 S intoxication caused seizures, dyspnea, respiratory depression, knockdowns, and death. H2 S-exposed mice showed significant impairment in locomotor and coordinated motor movement activity compared with controls. Histopathology revealed neurodegenerative lesions in the collicular, thalamic, and cortical brain regions. H2 S significantly increased dopamine and serotonin concentration in several brain regions and caused time-dependent decreases in GABA and glutamate concentrations. Furthermore, H2 S significantly suppressed cytochrome c oxidase activity and caused significant loss in body weight. Overall, male mice were more sensitive than females. This novel translational mouse model of H2 S-induced neurotoxicity is reliable, reproducible, and recapitulates acute H2 S poisoning in humans.

SUBMITTER: Anantharam P 

PROVIDER: S-EPMC6383676 | biostudies-literature | 2017 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Characterizing a mouse model for evaluation of countermeasures against hydrogen sulfide-induced neurotoxicity and neurological sequelae.

Anantharam Poojya P   Whitley Elizabeth M EM   Mahama Belinda B   Kim Dong-Suk DS   Imerman Paula M PM   Shao Dahai D   Langley Monica R MR   Kanthasamy Arthi A   Rumbeiha Wilson K WK  

Annals of the New York Academy of Sciences 20170718 1


Hydrogen sulfide (H<sub>2</sub> S) is a highly neurotoxic gas. It is the second most common cause of gas-induced deaths. Beyond mortality, surviving victims of acute exposure may suffer long-term neurological sequelae. There is a need to develop countermeasures against H<sub>2</sub> S poisoning. However, no translational animal model of H<sub>2</sub> S-induced neurological sequelae exists. Here, we describe a novel mouse model of H<sub>2</sub> S-induced neurotoxicity for translational research.  ...[more]

Similar Datasets

| S-EPMC5734662 | biostudies-literature
| S-EPMC4940262 | biostudies-literature
| S-EPMC5562153 | biostudies-other
| S-EPMC3548939 | biostudies-literature
| S-EPMC7642620 | biostudies-literature
| S-EPMC7998212 | biostudies-literature
| S-EPMC3789624 | biostudies-literature
| S-EPMC6261663 | biostudies-literature
2009-07-07 | GSE12018 | GEO
| S-EPMC7072623 | biostudies-literature