Unknown

Dataset Information

0

Quantification of human neuromuscular function through optogenetics.


ABSTRACT: The study of human neuromuscular diseases has traditionally been performed in animal models, due to the difficulty of performing studies in human subjects. Despite the unquestioned value of animal models, inter-species differences hamper the translation of these findings to clinical trials. Tissue-engineered models of the neuromuscular junction (NMJ) allow for the recapitulation of the human physiology in tightly controlled in vitro settings. Methods: Here we report the first human patient-specific tissue-engineered model of the neuromuscular junction (NMJ) that combines stem cell technology with tissue engineering, optogenetics, microfabrication and image processing. The combination of custom-made hardware and software allows for repeated, quantitative measurements of NMJ function in a user-independent manner. Results: We demonstrate the utility of this model for basic and translational research by characterizing in real time the functional changes during physiological and pathological processes. Principal Conclusions: This system holds great potential for the study of neuromuscular diseases and drug screening, allowing for the extraction of quantitative functional data from a human, patient-specific system.

SUBMITTER: Vila OF 

PROVIDER: S-EPMC6401498 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Quantification of human neuromuscular function through optogenetics.

Vila Olaia F OF   Uzel Sebastien G M SGM   Ma Stephen P SP   Williams Damian D   Pak Joseph J   Kamm Roger D RD   Vunjak-Novakovic Gordana G  

Theranostics 20190131 5


The study of human neuromuscular diseases has traditionally been performed in animal models, due to the difficulty of performing studies in human subjects. Despite the unquestioned value of animal models, inter-species differences hamper the translation of these findings to clinical trials. Tissue-engineered models of the neuromuscular junction (NMJ) allow for the recapitulation of the human physiology in tightly controlled <i>in vitro</i> settings. <b>Methods</b>: Here we report the first human  ...[more]

Similar Datasets

| S-EPMC6042787 | biostudies-literature
| S-EPMC9847014 | biostudies-literature
| S-EPMC2908193 | biostudies-literature
| S-EPMC6938339 | biostudies-literature
| S-EPMC8085001 | biostudies-literature
| S-EPMC5986269 | biostudies-literature
| S-EPMC9908081 | biostudies-literature
| S-EPMC5630622 | biostudies-literature
| S-EPMC3328911 | biostudies-literature
| S-EPMC6795289 | biostudies-literature