Inhibitory Effects of Berberine Hydrochloride on Trichophyton mentagrophytes and the Underlying Mechanisms.
Ontology highlight
ABSTRACT: BACKGROUND:T. mentagrophytes can infect all mammals, including rabbits, causing serious infections with remarkable economic losses for rabbit farmers. Berberine is an alkaloid that is effective against a variety of microbial infections such as T. mentagrophytes. Growth curve by dry weight determination and in-vivo antifungal assay were carried out to clarify the inhibitory effect of berberine hydrochloride against T. mentagrophytes. Transcriptomics analyses were also carried out for better understanding of the underlying mechanisms. RESULTS:The growth rate of T. mentagrophytes was significantly higher in control condition than under berberine hydrochloride or clotrimazole for 60 h. The growth rate of T. mentagrophytes was significantly slighter higher in berberine condition (1 mg) than under clotrimazole for 46 h. T. mentagrophytes seriously shrunk after berberine or clotrimazole treatment, as observed by TEM and in SEM. Significant recovery was evident in three berberine groups on day 6 compared with the DMSO group. Results from transcriptomics analyses showed 18,881 identified unigenes, including 18,754 and 12,127 in the NT and SwissProt databases. Among these, 12,011, 9174, and 11,679 unigenes belonged to 3 Gene Ontology (GO), 43 KEGG, and 25 KOG categories, respectively. Interestingly, we found that down-regulation of 14?-demethylase exposed to various medicines was slightly different, i.e., berberine hydrochloride (fold change -3.4956) and clotrimazole (fold change -2.1283) caused various degrees of alteration. CONCLUSIONS:Berberine hydrochloride could inhibit the growth of T. mentagrophytes. Berberine hydrochloride could also cure dermatosis induced by T. mentagrophytes. Down-regulation of 14?-demethylase exposed to various medicines was slightly different and might be one of the anti-resistance mechanisms of berberine hydrochloride in T. mentagrophytes. The present investigation provides considerable transcript sequence data that would help further assess the antifungal mechanisms against T. mentagrophytes, for antifungal medicine development.
SUBMITTER: Xiao CW
PROVIDER: S-EPMC6412246 | biostudies-literature | 2019 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA