Unknown

Dataset Information

0

Thermo-Responsive Fluorescent Polymers with Diverse LCSTs for Ratiometric Temperature Sensing through FRET.


ABSTRACT: Temperature is a significant parameter to regulate biological reactions and functions inside cells. Sensing the intracellular temperature with a competent method is necessary to understand life science. In this work, an energy-transfer polymeric thermometer was designed for temperature sensing. The thermometer was prepared from two thermo-responsive polymers with different lower critical solution temperatures (LCSTs) of 31.1 °C and 48.6 °C, coupling with blue and red fluorescent molecules, respectively, developed for ratiometric temperature sensing based on the Förster resonance energy transfer (FRET) mechanism. The polymers were synthesized from two monomers, N-isopropylacrylamide (NIPA) and N-isopropylmethacrylamide (NIPmA), which provided different temperature responses. The fluorescent intensity of each polymer (peaked at 436 and 628 nm, respectively) decreased upon the heating of the polymer aqueous solution. While these two polymer aqueous solutions were mixed, the fluorescent intensity decrease at 436 nm and substantial fluorescence enhancement at 628 nm was observed with the increasing temperature due to FRET effect. The cell imaging of HeLa cells by these thermo-responsive polymers was explored. The difference of LCSTs resulting in ratiometric fluorescence change would have a potential impact on the various biomedical applications.

SUBMITTER: Ding Z 

PROVIDER: S-EPMC6415166 | biostudies-literature | 2018 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Thermo-Responsive Fluorescent Polymers with Diverse LCSTs for Ratiometric Temperature Sensing through FRET.

Ding Zhaoyang Z   Wang Chunfei C   Feng Gang G   Zhang Xuanjun X  

Polymers 20180308 3


Temperature is a significant parameter to regulate biological reactions and functions inside cells. Sensing the intracellular temperature with a competent method is necessary to understand life science. In this work, an energy-transfer polymeric thermometer was designed for temperature sensing. The thermometer was prepared from two thermo-responsive polymers with different lower critical solution temperatures (LCSTs) of 31.1 °C and 48.6 °C, coupling with blue and red fluorescent molecules, respe  ...[more]

Similar Datasets

| S-EPMC9473198 | biostudies-literature
| S-EPMC5637826 | biostudies-literature
| S-EPMC10046200 | biostudies-literature
| S-EPMC9060919 | biostudies-literature
| S-EPMC6415017 | biostudies-literature
| S-EPMC3664065 | biostudies-literature
| S-EPMC4899257 | biostudies-literature
| S-EPMC8654024 | biostudies-literature
| S-EPMC5613240 | biostudies-literature
| S-EPMC6100176 | biostudies-literature