Unknown

Dataset Information

0

Amorphous Ag2S Micro-rods-Enhanced Fluorescence on Liquid Crystals: Cation-? Interaction-Triggered Aggregation-Induced Emission Effect.


ABSTRACT: Aggregation-induced emission (AIE) system has long been regarded as a promising substitute to overcome the aggregation-caused quenching in traditional luminescent liquid crystals, which could further enhance its efficiency and application. However, due to the intrinsic weak interaction between hybrid components, heterogeneous inorganic materials-induced AIE process was rarely reported. In this study, trace amounts of amorphous Ag2S microrods and an AIE-active liquid crystalline compound tetraphenylethylene-propylbenzene (TPE-PPE) were proposed to construct additional intense interaction to trigger AIE effect. The enhanced concentration of unsaturated Ag ions and excess positive charge on Ag2S surface promote a cation-? interaction with TPE-PPE, leading to a 36-fold increase in fluorescence, which is predominately high in luminescent liquid crystal system. To the best of our knowledge, this is the first report of the AIE process activated by cation-? interaction. This novel approach would provide guidance to fabricate high-luminescence meso phases for future luminescent display device.

SUBMITTER: Kang J 

PROVIDER: S-EPMC6495463 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Amorphous Ag<sub>2</sub>S Micro-rods-Enhanced Fluorescence on Liquid Crystals: Cation-π Interaction-Triggered Aggregation-Induced Emission Effect.

Kang Jianxin J   Yu Jian J   Li Anran A   Zhao Dongyu D   Liu Bin B   Guo Lin L   Tang Benzhong B  

iScience 20190415


Aggregation-induced emission (AIE) system has long been regarded as a promising substitute to overcome the aggregation-caused quenching in traditional luminescent liquid crystals, which could further enhance its efficiency and application. However, due to the intrinsic weak interaction between hybrid components, heterogeneous inorganic materials-induced AIE process was rarely reported. In this study, trace amounts of amorphous Ag<sub>2</sub>S microrods and an AIE-active liquid crystalline compou  ...[more]

Similar Datasets

| S-EPMC6343058 | biostudies-literature
| S-EPMC6376001 | biostudies-literature
| S-EPMC7471969 | biostudies-literature
| S-EPMC6421417 | biostudies-literature
| S-EPMC3905722 | biostudies-literature
| S-EPMC7844307 | biostudies-literature
| S-EPMC8746604 | biostudies-literature
| S-EPMC8241903 | biostudies-literature
| S-EPMC9260759 | biostudies-literature
| S-EPMC2737635 | biostudies-literature