Unknown

Dataset Information

0

Mild hyperthermia as a localized radiosensitizer for deep-seated tumors: investigation in an orthotopic prostate cancer model in mice.


ABSTRACT: OBJECTIVE::Non-ablative or mild hyperthermia (HT) has been shown in preclinical (and clinical) studies as a localized radiosensitizer that enhances the tumoricidal effects of radiation. Most preclinical in vivo HT studies use subcutaneous tumor models which do not adequately represent clinical conditions (e.g. proximity of normal/critical organs) or replicate the tumor microenvironment-both of which are important factors for eventual clinical translation. The purpose of this work is to demonstrate proof-of-concept of locoregional radiosensitization with superficially applied, radiofrequency (RF)-induced HT in an orthotopic mouse model of prostate cancer. METHODS::In a 4-arm study, 40 athymic male nude mice were inoculated in the prostate with luciferase-transfected human prostate cancer cells (PC3). Tumor volumes were allowed to reach 150-250?mm3 (as measured by ultrasound) following which, mice were randomized into (i) control (no intervention); (ii) HT alone; (iii) RT alone; and (iv) HT + RT. RF-induced HT was administered (Groups ii and iv) using the Oncotherm LAB EHY-100 device to achieve a target temperature of 41 °C in the prostate. RT was administered ~30?min following HT, using an image-guided small animal radiotherapy research platform. In each case, a dual arc plan was used to deliver 12?Gy to the target in a single fraction. One animal from each cohort was euthanized on Day 10 or 11 after treatment for caspase-9 and caspase-3 Western blot analysis. RESULTS::The inoculation success rate was 89%. Mean tumor size at randomization (~16 days post-inoculation) was ~189?mm3 . Following the administration of RT and HT, mean tumor doubling times in days were: control = 4.2; HT = 4.5; RT = 30.4; and HT + RT = 33.4. A significant difference (p = 0.036) was noted between normalized nadir volumes for the RT alone (0.76) and the HT + RT (0.40) groups. Increased caspase-3 expression was seen in the combination treatment group compared to the other treatment groups. CONCLUSION::These early results demonstrate the successful use of external mild HT as a localized radiosensitizer for deep-seated tumors. ADVANCES IN KNOWLEDGE::We successfully demonstrated the feasibility of administering external mild HT in an orthotopic tumor model and demonstrated preclinical proof-of-concept of HT-based localized radiosensitization in prostate cancer radiotherapy.

SUBMITTER: Cohen J 

PROVIDER: S-EPMC6541201 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mild hyperthermia as a localized radiosensitizer for deep-seated tumors: investigation in an orthotopic prostate cancer model in mice.

Cohen Justin J   Anvari Akbar A   Samanta Santanu S   Poirier Yannick Y   Soman Sandrine S   Alexander Allen A   Ranjbar Maida M   Pavlovic Ramilda R   Zodda Andrew A   Jackson Isabel L IL   Mahmood Javed J   Vujaskovic Zeljko Z   Sawant Amit A  

The British journal of radiology 20190212 1095


<h4>Objective:</h4>Non-ablative or mild hyperthermia (HT) has been shown in preclinical (and clinical) studies as a localized radiosensitizer that enhances the tumoricidal effects of radiation. Most preclinical in vivo HT studies use subcutaneous tumor models which do not adequately represent clinical conditions (e.g. proximity of normal/critical organs) or replicate the tumor microenvironment-both of which are important factors for eventual clinical translation. The purpose of this work is to d  ...[more]

Similar Datasets

| S-EPMC4025989 | biostudies-literature
| S-EPMC6054595 | biostudies-literature
| S-EPMC2843684 | biostudies-literature
| S-EPMC3732275 | biostudies-literature
| S-EPMC6956812 | biostudies-literature
| S-EPMC9592586 | biostudies-literature
| S-EPMC5976174 | biostudies-literature
| S-EPMC6746429 | biostudies-literature
| S-EPMC7026389 | biostudies-literature
| S-EPMC3928046 | biostudies-literature