Ontology highlight
ABSTRACT: Significance statement
The group II metabotropic glutamate (mGlu II) receptors exert a well characterized action on presynaptic neuron terminals to modulate neurotransmitter release. Here, we show that these receptors also have postsynaptic effects in promoting the induction of synaptic plasticity. Using an electrophysiological approach including field and whole-cell patch recording in hippocampi from wild-type and transgenic mice, we show that activation of group II mGlu receptors enhances NMDA receptor (NMDAR)-mediated currents through PKC-dependent phosphorylation. This priming of NMDARs lowers the threshold for the induction of LTP of synaptic transmission. These findings may also provide new insights into the mechanisms through which drugs targeting mGlu II receptors alleviate hypoglutamatergic conditions such as those occurring in certain brain disorders such as schizophrenia.
SUBMITTER: Rosenberg N
PROVIDER: S-EPMC6601717 | biostudies-literature | 2016 Nov
REPOSITORIES: biostudies-literature
The Journal of neuroscience : the official journal of the Society for Neuroscience 20161101 45
It is well established that selective activation of group I metabotropic glutamate (mGlu) receptors induces LTD of synaptic transmission at Schaffer collateral-CA1 synapses. In contrast, application of 1S,3R-ACPD, a mixed agonist at group I and group II mGlu receptors, induces LTP. Using whole-cell recordings from CA1 pyramidal cells and field recordings in the hippocampal CA1 region, we investigated the specific contribution of group II mGlu receptors to synaptic plasticity at Schaffer collater ...[more]