Unknown

Dataset Information

0

Indoleamine-2,3-Dioxygenase in Thyroid Cancer Cells Suppresses Natural Killer Cell Function by Inhibiting NKG2D and NKp46 Expression via STAT Signaling Pathways.


ABSTRACT: Natural killer (NK) cells are key players in the immune system. They use receptors on their cell surface to identify target cells. However, to escape being killed by the immune system, cancer cells such as thyroid cancer cells, use various methods to suppress the function of NK cells. Thus, this study aims to elucidate how thyroid cancer cells downregulate NK cell function in a co-culture system. We found that thyroid cancer cells suppress NK cell cytotoxicity and inhibit the expression of activating receptors, such as NKG2D and NKp46, by regulating indoleamine 2,3-dioxygenase (IDO). Also, thyroid cancer cells produce kynurenine using IDO, which causes NK cell dysfunction. Kynurenine enters NK cells via the aryl hydrocarbon receptor (AhR) on the surfaces of the NK cells, which decreases NK cell function and NK receptor expression via the signal transducer and activator of transcription (STAT) 1 and STAT3 pathways. In addition, STAT1 and STAT3 directly regulated the expression of NKG2D and NKp46 receptors by binding to the promoter region. Conclusively, NK cell function may be impaired in thyroid cancer patients by IDO-induced kynurenine production. This implies that IDO can be used as a target for thyroid cancer therapeutics aiming at improving NK cell function.

SUBMITTER: Park A 

PROVIDER: S-EPMC6617210 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Indoleamine-2,3-Dioxygenase in Thyroid Cancer Cells Suppresses Natural Killer Cell Function by Inhibiting NKG2D and NKp46 Expression via STAT Signaling Pathways.

Park Arum A   Yang Yunjeong Y   Lee Yunhee Y   Kim Mi Sun MS   Park Young-Jun YJ   Jung Haiyoung H   Kim Tae-Don TD   Lee Hee Gu HG   Choi Inpyo I   Yoon Suk Ran SR  

Journal of clinical medicine 20190612 6


Natural killer (NK) cells are key players in the immune system. They use receptors on their cell surface to identify target cells. However, to escape being killed by the immune system, cancer cells such as thyroid cancer cells, use various methods to suppress the function of NK cells. Thus, this study aims to elucidate how thyroid cancer cells downregulate NK cell function in a co-culture system. We found that thyroid cancer cells suppress NK cell cytotoxicity and inhibit the expression of activ  ...[more]

Similar Datasets

| S-EPMC7935521 | biostudies-literature
| S-EPMC4368142 | biostudies-literature
| S-EPMC6318801 | biostudies-literature
| S-EPMC3645912 | biostudies-literature
| S-EPMC3190733 | biostudies-literature
| S-EPMC3435167 | biostudies-literature
| S-EPMC2939288 | biostudies-literature
| S-EPMC1221754 | biostudies-other
2017-02-09 | GSE75956 | GEO
| S-EPMC4678703 | biostudies-literature