Ontology highlight
ABSTRACT: Background
Acute kidney injury represents a major threat to the transplanted kidney. Nevertheless, these kidneys have the potential to fully recover. Tubular regeneration following acute kidney injury is driven by the regenerative potential of tubular cells originating from a tubular stem cell pool. We investigated urinary sediments of acute kidney injury transplanted patients and compared it to those of non-transplanted patients. Thereby we discovered tubular cell agglomerates, which have not been described in vivo. We hypothesized that these so-called nephrospheres were associated with recovery from acute kidney injury.Methods
Urine sediment of 45 kidney-transplanted and 19 non-transplanted individuals was investigated. Nephrospheres were isolated and stained for several molecular markers including aquaporin 1 (AQP1) and calcium sensing receptor (CASR). Nephrospheres were cultured to examine their growth behavior in vitro. In addition, quantitative PCR for CASR, AQP1, and podocin (NPHS2) was performed.Results
Nephrospheres were excreted in the urine of 17 kidney-transplant recipients 7?days after onset of acute kidney injury and were detectable over several days until kidney function was recovered to baseline creatinine levels. None were found in the urine of non-transplanted individuals. Nephrospheres were either AQP1+/CASR+ or AQP1-/CASR+ and could be cultured for 27?days. Mitotic cells could still be visualized after 17?days in culture. Quantitative PCR detected AQP1 in both kidney-transplanted and non-transplanted individuals during the phase of creatinine decline. As a limitation qPCR was only performed for the entire urinary sediment.Conclusions
Nephrospheres are three dimensional tubular cell agglomerates which appeared in urine of kidney transplant recipients recovering from acute kidney injury. Appearance of nephrospheres in urine was independent of the duration after kidney transplantation. Nephrospheres proliferated in cell culture and kept expressing kidney specific marker. Presence of nephrospheres in urine showed a specificity of 100% and a sensitivity of 60.71% for recovery.
SUBMITTER: Knafl D
PROVIDER: S-EPMC6617660 | biostudies-literature | 2019 Jul
REPOSITORIES: biostudies-literature
BMC nephrology 20190709 1
<h4>Background</h4>Acute kidney injury represents a major threat to the transplanted kidney. Nevertheless, these kidneys have the potential to fully recover. Tubular regeneration following acute kidney injury is driven by the regenerative potential of tubular cells originating from a tubular stem cell pool. We investigated urinary sediments of acute kidney injury transplanted patients and compared it to those of non-transplanted patients. Thereby we discovered tubular cell agglomerates, which ha ...[more]