Unknown

Dataset Information

0

Enhanced Electrochemical Performance of Stable SPES/SPANI Composite Polymer Electrolyte Membranes by Enriched Ionic Nanochannels.


ABSTRACT: Herein, we present the results of sulfonated polyaniline (SPANI) and sulfonated poly(ether sulfone) (SPES) composite polymer electrolyte membranes. The membranes are established for high-temperature proton conductivity and methanol permeability to render their applicability. Composite membranes have been prepared by modifying the SPES matrix with different concentrations of SPANI (e.g., 1, 2, 5, 10, and 20 wt %). Structural and thermomechanical characterizations have been performed using the transmission electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analyzer techniques. Physicochemical and electrochemical properties have been evaluated by water uptake, ion-exchange capacity, dimensional stability, and proton conductivity. Methanol permeability experiment was carried out to analyze the compatibility of prepared membranes toward direct methanol fuel cell application and found the lowest methanol permeability for PAS-5. Also, the membranes reveal excellent thermal, mechanical, and physicochemical properties for their application toward high-temperature electromembrane processes.

SUBMITTER: Gahlot S 

PROVIDER: S-EPMC6644880 | biostudies-literature | 2017 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Enhanced Electrochemical Performance of Stable SPES/SPANI Composite Polymer Electrolyte Membranes by Enriched Ionic Nanochannels.

Gahlot Swati S   Gupta Hariom H   Jha Prafulla K PK   Kulshrestha Vaibhav V  

ACS omega 20170918 9


Herein, we present the results of sulfonated polyaniline (SPANI) and sulfonated poly(ether sulfone) (SPES) composite polymer electrolyte membranes. The membranes are established for high-temperature proton conductivity and methanol permeability to render their applicability. Composite membranes have been prepared by modifying the SPES matrix with different concentrations of SPANI (e.g., 1, 2, 5, 10, and 20 wt %). Structural and thermomechanical characterizations have been performed using the tra  ...[more]

Similar Datasets

| S-EPMC9866075 | biostudies-literature
| S-EPMC7864481 | biostudies-literature
| S-EPMC8609243 | biostudies-literature
| S-EPMC9132938 | biostudies-literature
| S-EPMC9876549 | biostudies-literature
| S-EPMC3734621 | biostudies-literature
| S-EPMC9637189 | biostudies-literature
| S-EPMC7997425 | biostudies-literature
| S-EPMC7926618 | biostudies-literature
| S-EPMC8196583 | biostudies-literature