Effect of the Electronic State of Cu, Ag, and Au on Diesel Soot Abatement: Performance of Cu/ZnO, Ag/ZnO, and Au/ZnO Catalysts.
Ontology highlight
ABSTRACT: Noble metals such as Au, Ag, and Cu supported over semiconducting ZnO are well-known heterogeneous oxidation catalysts. All of them have been utilized for the oxidation of diesel soot with varied success. However, Au-supported ZnO is seen to be superior among them. Here, we present a comparative study of all these three catalysts for diesel soot oxidation to explain why Au/ZnO is the best among them, demonstrating the contribution of electronic states of metals in composite catalysts. The electronic states of Cu, Ag, and Au determined by X-ray photoelectron spectroscopy on 1 wt % Cu/ZnO, 1 wt % Ag/ZnO, and 1 wt % Au/ZnO catalysts were correlated with their diesel soot oxidation activities. Although all three catalysts present reasonable diesel soot oxidation activities at relatively low temperature, 1% Cu/ZnO and 1% Ag/ZnO oxidize only about 60% of the deposited diesel soot around 250 °C and 1% Au/ZnO oxidizes 100% of the deposited diesel soot, at a temperature as low as 230 °C. The activity of the catalysts is attributed to the formation of stable M0-M?+ bifunctional catalytic sites at the metal-ZnO interface, which enhances the contact efficiency of solid diesel soot on M?+ and generates the superoxide species on M0 moieties. The stability of the bifunctional M0-M?+ sites is controlled by the electronic interactions between the metal (M) and n-type semiconductor ZnO at their interface. Very high activity of 1% Au/ZnO is attributed to the presence of Au3+ at the catalyst surface, which generates a stronger Coulombic force with diesel soot electrons. We demonstrate a direct relation between the diesel soot oxidation activity of these three metals and their electronic states at the catalyst surface.
SUBMITTER: Corro G
PROVIDER: S-EPMC6648296 | biostudies-literature | 2019 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA