Unknown

Dataset Information

0

Anisotropic spin-orbit torque generation in epitaxial SrIrO3 by symmetry design.


ABSTRACT: Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5d-electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstrate room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO3 We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO3 arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO3 through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO3 with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry design approach to engineer spin-orbit effects. We therefore anticipate that these epitaxial 5d transition-metal oxide thin films can be an ideal building block for low-power spintronics.

SUBMITTER: Nan T 

PROVIDER: S-EPMC6697884 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Anisotropic spin-orbit torque generation in epitaxial SrIrO<sub>3</sub> by symmetry design.

Nan T T   Anderson T J TJ   Gibbons J J   Hwang K K   Campbell N N   Zhou H H   Dong Y Q YQ   Kim G Y GY   Shao D F DF   Paudel T R TR   Reynolds N N   Wang X J XJ   Sun N X NX   Tsymbal E Y EY   Choi S Y SY   Rzchowski M S MS   Kim Yong Baek YB   Ralph D C DC   Eom C B CB  

Proceedings of the National Academy of Sciences of the United States of America 20190726 33


Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5<i>d</i>-electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to st  ...[more]

Similar Datasets

| S-EPMC6868678 | biostudies-literature
| S-EPMC5045270 | biostudies-literature
| S-EPMC7029010 | biostudies-literature
| S-EPMC8087697 | biostudies-literature
| S-EPMC10901790 | biostudies-literature
| S-EPMC5715149 | biostudies-literature
| S-EPMC7411514 | biostudies-literature
| S-EPMC11341728 | biostudies-literature
| S-EPMC10460875 | biostudies-literature
| S-EPMC4737803 | biostudies-other