Unknown

Dataset Information

0

A CRISPR/Cas9 screen identifies the histone demethylase MINA53 as a novel HIV-1 latency-promoting gene (LPG).


ABSTRACT: Although combination antiretroviral therapy is potent to block active replication of HIV-1 in AIDS patients, HIV-1 persists as transcriptionally inactive proviruses in infected cells. These HIV-1 latent reservoirs remain a major obstacle for clearance of HIV-1. Investigation of host factors regulating HIV-1 latency is critical for developing novel antiretroviral reagents to eliminate HIV-1 latent reservoirs. From our recently accomplished CRISPR/Cas9 sgRNA screens, we identified that the histone demethylase, MINA53, is potentially a novel HIV-1 latency-promoting gene (LPG). We next validated MINA53's function in maintenance of HIV-1 latency by depleting MINA53 using the alternative RNAi approach. We further identified that in vitro MINA53 preferentially demethylates the histone substrate, H3K36me3 and that in cells MINA53 depletion by RNAi also increases the local level of H3K36me3 at LTR. The effort to map the downstream effectors unraveled that H3K36me3 has the cross-talk with another epigenetic mark H4K16ac, mediated by KAT8 that recognizes the methylated H3K36 and acetylated H4K16. Removing the MINA53-mediated latency mechanisms could benefit the reversal of post-integrated latent HIV-1 proviruses for purging of reservoir cells. We further demonstrated that a pan jumonji histone demethylase inhibitor, JIB-04, inhibits MINA53-mediated demethylation of H3K36me3, and JIB-04 synergizes with other latency-reversing agents (LRAs) to reactivate latent HIV-1.

SUBMITTER: Huang H 

PROVIDER: S-EPMC6698651 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

A CRISPR/Cas9 screen identifies the histone demethylase MINA53 as a novel HIV-1 latency-promoting gene (LPG).

Huang Huachao H   Kong Weili W   Jean Maxime M   Fiches Guillaume G   Zhou Dawei D   Hayashi Tsuyoshi T   Que Jianwen J   Santoso Netty N   Zhu Jian J  

Nucleic acids research 20190801 14


Although combination antiretroviral therapy is potent to block active replication of HIV-1 in AIDS patients, HIV-1 persists as transcriptionally inactive proviruses in infected cells. These HIV-1 latent reservoirs remain a major obstacle for clearance of HIV-1. Investigation of host factors regulating HIV-1 latency is critical for developing novel antiretroviral reagents to eliminate HIV-1 latent reservoirs. From our recently accomplished CRISPR/Cas9 sgRNA screens, we identified that the histone  ...[more]

Similar Datasets

| S-EPMC5159885 | biostudies-literature
| S-EPMC11005436 | biostudies-literature
| S-EPMC9262610 | biostudies-literature
| S-EPMC6768851 | biostudies-literature
| S-EPMC4833428 | biostudies-literature
| S-EPMC5939577 | biostudies-literature
| S-EPMC10170782 | biostudies-literature
2016-07-01 | E-GEOD-71544 | biostudies-arrayexpress
| S-EPMC8773906 | biostudies-literature
| S-EPMC8193919 | biostudies-literature