Unknown

Dataset Information

0

A potent voltage-gated calcium channel inhibitor engineered from a nanobody targeted to auxiliary CaVβ subunits.


ABSTRACT: Inhibiting high-voltage-activated calcium channels (HVACCs; CaV1/CaV2) is therapeutic for myriad cardiovascular and neurological diseases. For particular applications, genetically-encoded HVACC blockers may enable channel inhibition with greater tissue-specificity and versatility than is achievable with small molecules. Here, we engineered a genetically-encoded HVACC inhibitor by first isolating an immunized llama nanobody (nb.F3) that binds auxiliary HVACC CaVβ subunits. Nb.F3 by itself is functionally inert, providing a convenient vehicle to target active moieties to CaVβ-associated channels. Nb.F3 fused to the catalytic HECT domain of Nedd4L (CaV-aβlator), an E3 ubiquitin ligase, ablated currents from diverse HVACCs reconstituted in HEK293 cells, and from endogenous CaV1/CaV2 channels in mammalian cardiomyocytes, dorsal root ganglion neurons, and pancreatic β cells. In cardiomyocytes, CaV-aβlator redistributed CaV1.2 channels from dyads to Rab-7-positive late endosomes. This work introduces CaV-aβlator as a potent genetically-encoded HVACC inhibitor, and describes a general approach that can be broadly adapted to generate versatile modulators for macro-molecular membrane protein complexes.

SUBMITTER: Morgenstern TJ 

PROVIDER: S-EPMC6701945 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9016415 | biostudies-literature
| S-EPMC5043047 | biostudies-literature
| S-EPMC3788357 | biostudies-literature
| S-EPMC3223918 | biostudies-literature
| S-EPMC5932002 | biostudies-literature
| S-EPMC5034038 | biostudies-literature
| S-EPMC7781643 | biostudies-literature
| S-EPMC3503226 | biostudies-literature
| S-EPMC3748150 | biostudies-literature
| S-EPMC6697093 | biostudies-literature