Unknown

Dataset Information

0

Structural features in the glycine-binding sites of the GluN1 and GluN3A subunits regulate the surface delivery of NMDA receptors.


ABSTRACT: N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that play an essential role in mediating excitatory neurotransmission in the mammalian central nervous system (CNS). Functional NMDARs are tetramers composed of GluN1, GluN2A-D, and/or GluN3A-B subunits, giving rise to a wide variety of NMDAR subtypes with unique functional properties. Here, we examined the surface delivery and functional properties of NMDARs containing mutations in the glycine-binding sites in GluN1 and GluN3A subunits expressed in mammalian cell lines and primary rat hippocampal neurons. We found that the structural features of the glycine-binding sites in both GluN1 and GluN3A subunits are correlated with receptor forward trafficking to the cell surface. In addition, we found that a potentially clinically relevant mutation in the glycine-binding site of the human GluN3A subunit significantly reduces surface delivery of NMDARs. Taken together, these findings provide novel insight into how NMDARs are regulated by their glycine-binding sites and may provide important information regarding the role of NMDARs in both physiological and pathophysiological processes in the mammalian CNS.

SUBMITTER: Skrenkova K 

PROVIDER: S-EPMC6707325 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structural features in the glycine-binding sites of the GluN1 and GluN3A subunits regulate the surface delivery of NMDA receptors.

Skrenkova Kristyna K   Hemelikova Katarina K   Kolcheva Marharyta M   Kortus Stepan S   Kaniakova Martina M   Krausova Barbora B   Horak Martin M  

Scientific reports 20190823 1


N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that play an essential role in mediating excitatory neurotransmission in the mammalian central nervous system (CNS). Functional NMDARs are tetramers composed of GluN1, GluN2A-D, and/or GluN3A-B subunits, giving rise to a wide variety of NMDAR subtypes with unique functional properties. Here, we examined the surface delivery and functional properties of NMDARs containing mutations in the glycine-binding sites in GluN1 and  ...[more]

Similar Datasets

| S-EPMC6233196 | biostudies-literature
| S-EPMC7556698 | biostudies-literature
| S-EPMC3690137 | biostudies-literature
| S-EPMC5598085 | biostudies-literature
| S-EPMC7530031 | biostudies-literature
| S-EPMC3846451 | biostudies-literature
| S-EPMC4366753 | biostudies-literature
| S-EPMC3171209 | biostudies-literature
| S-EPMC3302728 | biostudies-literature
| S-EPMC4442789 | biostudies-literature