Unknown

Dataset Information

0

Identification of hub genes and molecular mechanisms in infant acute lymphoblastic leukemia with MLL gene rearrangement.


ABSTRACT: Infant acute lymphoblastic leukemia (ALL) with the mixed lineage leukemia (MLL) gene rearrangement (MLL-R) is considered a distinct leukemia from childhood or non-MLL-R infant ALL. To detect key genes and elucidate the molecular mechanisms of MLL-R infant ALL, microarray expression data were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) between MLL-R and non-MLL-R infant ALL were identified. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out. Then, we constructed a protein-protein interaction (PPI) network and identified the hub genes. Finally, drug-gene interactions were mined. A total of 139 cases of MLL-R infant ALL including 77 (55.4%) fusions with AF4, 38 (27.3%) with ENL, 14 (10.1%) with AF9, and 10 (7.2%) other gene fusions were characterized. A total of 236 up-regulated and 84 down-regulated DEGs were identified. The up-regulated DEGs were mainly involved in homophilic cell adhesion, negative regulation of apoptotic process and cellular response to drug GO terms, while down-regulated DEGs were mainly enriched in extracellular matrix organization, protein kinase C signaling and neuron projection extension GO terms. The up-regulated DEGs were enriched in seven KEGG pathways, mainly involving transcriptional regulation and signaling pathways, and down-regulated DEGs were involved in three main KEGG pathways including Alzheimer's disease, TGF-beta signaling pathway, and hematopoietic cell lineage. The PPI network included 297 nodes and 410 edges, with MYC, ALB, CD44, PTPRC and TNF identified as hub genes. Twenty-three drug-gene interactions including four up-regulated hub genes and 24 drugs were constructed by Drug Gene Interaction database (DGIdb). In conclusion, MYC, ALB, CD44, PTPRC and TNF may be potential bio-markers for the diagnosis and therapy of MLL-R infant ALL.

SUBMITTER: Zhang H 

PROVIDER: S-EPMC6717502 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of hub genes and molecular mechanisms in infant acute lymphoblastic leukemia with <i>MLL</i> gene rearrangement.

Zhang Hao H   Cheng Juan J   Li Zijian Z   Xi Yaming Y  

PeerJ 20190828


Infant acute lymphoblastic leukemia (ALL) with the mixed lineage leukemia (<i>MLL</i>) gene rearrangement (<i>MLL</i>-R) is considered a distinct leukemia from childhood or non-<i>MLL</i>-R infant ALL. To detect key genes and elucidate the molecular mechanisms of <i>MLL</i>-R infant ALL, microarray expression data were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) between <i>MLL</i>-R and non-<i>MLL</i>-R infant ALL were identified. Gene on  ...[more]

Similar Datasets

| S-EPMC7953500 | biostudies-literature
| S-EPMC4368425 | biostudies-literature
| S-EPMC2890186 | biostudies-literature
2020-10-30 | GSE148195 | GEO
| S-EPMC7851112 | biostudies-literature
| S-EPMC9586771 | biostudies-literature
| S-EPMC4319237 | biostudies-literature
| S-EPMC5220136 | biostudies-literature
| S-EPMC8245184 | biostudies-literature
| S-EPMC4359964 | biostudies-literature