Project description:Inflammation and vascular smooth muscle cell (VSMC) phenotypic switching are causally linked to pulmonary arterial hypertension (PAH) pathogenesis. Carbonic anhydrase inhibition induces mild metabolic acidosis and exerts protective effects in hypoxic pulmonary hypertension. Carbonic anhydrases and metabolic acidosis are further known to modulate immune cell activation. To evaluate if carbonic anhydrase inhibition modulates macrophage activation, inflammation, and VSMC phenotypic switching in severe experimental pulmonary hypertension, pulmonary hypertension was assessed in Sugen 5416/hypoxia (SU/Hx) rats after treatment with acetazolamide or ammonium chloride (NH4Cl). We evaluated pulmonary and systemic inflammation and characterized the effect of carbonic anhydrase inhibition and metabolic acidosis in alveolar macrophages and bone marrow-derived macrophages (BMDMs). We further evaluated the treatment effects on VSMC phenotypic switching in pulmonary arteries and pulmonary artery smooth muscle cells (PASMCs) and corroborated some of our findings in lungs and pulmonary arteries of patients with PAH. Both patients with idiopathic PAH and SU/Hx rats had increased expression of lung inflammatory markers and signs of PASMC dedifferentiation in pulmonary arteries. Acetazolamide and NH4Cl ameliorated SU/Hx-induced pulmonary hypertension and blunted pulmonary and systemic inflammation. Expression of carbonic anhydrase isoform 2 was increased in alveolar macrophages from SU/Hx animals, classically (M1) and alternatively (M2) activated BMDMs, and lungs of patients with PAH. Carbonic anhydrase inhibition and acidosis had distinct effects on M1 and M2 markers in BMDMs. Inflammatory cytokines drove PASMC dedifferentiation, and this was inhibited by acetazolamide and acidosis. The protective antiinflammatory effect of acetazolamide in pulmonary hypertension is mediated by a dual mechanism of macrophage carbonic anhydrase inhibition and systemic metabolic acidosis.
Project description:Series of sulfonamide-substituted amide (9-11), benzamide (12-15), and 1,3-disubstituted thiourea (17-26) derivatives were synthesized from a common precursor, i.e., substituted benzoyl chlorides. Structures of all of the synthesized compounds were characterized by spectroscopic techniques (1H nuclear magnetic resonance (NMR),13C NMR, and Fourier transform infrared spectroscopy (FTIR)). All of the amide (9-15) and thiourea (17-26) derivatives were screened against human carbonic anhydrases, hCA-II, hCA IX, and hCA-XII. Sulfonamide-substituted amides 9, 11, and 12 were found to be excellent selective inhibitors with IC50 values of 0.18 ± 0.05, 0.17 ± 0.05, and 0.58 ± 0.05 μM against hCA II, hCA IX, and hCA XII, respectively. Compound 9 was found to be highly selective for hCA II and about 6-fold more potent as compared to the standard antagonist, acetazolamide. Safe toxicity profiling of the most potent and selective compounds was determined against normal BHK-21 and HEK-293 T cells. Molecular docking studies were performed, which described the type of interactions between the synthesized compounds and enzyme proteins. In addition, in silico absorption, distribution, metabolism, and excretion (ADME) studies were performed, which showed that all of the synthesized molecules fulfilled the druggability criteria.
Project description:Ischemic stroke is a leading cause of death and disability worldwide. The only pharmacological treatment available to date for cerebral ischemia is tissue plasminogen activator (t-PA) and the search for successful therapeutic strategies still remains a major challenge. The loss of cerebral blood flow leads to reduced oxygen and glucose supply and a subsequent switch to the glycolytic pathway, which leads to tissue acidification. Carbonic anhydrase (CA, EC 4.2.1.1) is the enzyme responsible for converting carbon dioxide into a protons and bicarbonate, thus contributing to pH regulation and metabolism, with many CA isoforms present in the brain. Recently, numerous studies have shed light on several classes of carbonic anhydrase inhibitor (CAI) as possible new pharmacological agents for the management of brain ischemia. In the present review we summarized pharmacological, preclinical and clinical findings regarding the role of CAIs in strokes and we discuss their potential protective mechanisms.
Project description:Building on the conclusions of previous inhibition studies with pyridinium-benzenesulfonamides from our team and on the X-ray crystal structure of the lead compound identified, a series of 24 pyridinium derivatives of 3-aminobenzenesulfonamide was synthesized and investigated for carbonic anhydrase inhibition. The new pyridinium-sulfonamides were evaluated as inhibitors of four human carbonic anhydrase (CA, EC 4.2.1.1) isoforms, namely CA I, CA II (cytosolic), CA IX and XII (transmembrane, tumor-associated forms). Excellent inhibitory activity in the nanomolar range was observed against CA IX with most of these sulfonamides, and against CA XII (nanomolar/sub-nanomolar) with some of the new compounds. These sulfonamides were generally potent inhibitors of CA II and CA I too. Docking studies revealed a preference of these compounds to bind the P1 hydrophobic site of CAs, supporting the observed inhibition profile. The salt-like nature of these positively charged sulfonamides can further focus the inhibitory ability on membrane-bound CA IX and CA XII and could efficiently decrease the viability of three human carcinomas under hypoxic conditions where these isozymes are over-expressed, thus recommending the new compounds as potential diagnostic tools or therapeutic agents.
Project description:Phenols are among the largest and most widely distributed groups of secondary metabolites within the plant kingdom. They are implicated in multiple and essential physiological functions. In humans they play an important role as microconstituents of the daily diet, their consumption being considered healthy. The physical and chemical properties of phenolic compounds make these molecules versatile ligands, capable of interacting with a wide range of targets, such as the Carbonic Anhydrases (CAs, EC 4.2.1.1). CAs reversibly catalyze the fundamental reaction of CO? hydration to bicarbonate and protons in all living organisms, being actively involved in the regulation of a plethora of patho/physiological processes. This review will discuss the most recent advances in the search of naturally occurring phenols and their synthetic derivatives that inhibit the CAs and their mechanisms of action at molecular level. Plant extracts or mixtures are not considered in the present review.
Project description:Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread metalloenzymes in organisms in all life kingdoms, being involved in pH regulation, metabolic processes and many other physiological and pathological conditions. CA inhibitors and activators thus possess applications as pharmacological agents in the management of a range of diseases. Marine natural products have allowed the identification of some highly interesting CA inhibitors, among which are sulfonamides, phenols, polyamines, coumarins and several other miscellaneous inhibitors, which are reviewed here. Psammaplin C and some bromophenols were the most investigated classes of such marine-based inhibitors and have been used as lead molecules for developing interesting types of potent and, in some cases, isoform-selective inhibitors, with applications as antitumor agents by inhibiting human CA XII and P-glycoprotein activities. Some phenols have shown interesting bacterial and fungal β-CA inhibitory effects. Marine natural products thus constitute a gold mine for identifying novel CA inhibitors, some of which may lead to the development of novel types of pharmacological agents.
Project description:The tumor microenvironment is crucial for the growth of cancer cells, triggering particular biochemical and physiological changes, which frequently influence the outcome of anticancer therapies. The biochemical rationale behind many of these phenomena resides in the activation of transcription factors such as hypoxia-inducible factor 1 and 2 (HIF-1/2). In turn, the HIF pathway activates a number of genes including those involved in glucose metabolism, angiogenesis, and pH regulation. Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA IX and XII, actively participate in these processes and were validated as antitumor/antimetastatic drug targets. Here, we review the field of CA inhibitors (CAIs), which selectively inhibit the cancer-associated CA isoforms. Particular focus was on the identification of lead compounds and various inhibitor classes, and the measurement of CA inhibitory on-/off-target effects. In addition, the preclinical data that resulted in the identification of SLC-0111, a sulfonamide in Phase Ib/II clinical trials for the treatment of hypoxic, advanced solid tumors, are detailed.
Project description:The synthesis of selective inhibitors of human carbonic anhydrases (hCAs) is of paramount importance to avoid side effects derived from undesired interactions with isoforms not involved in the targeted pathology, and this was partially addressed with the introduction of a sugar moiety (the so-called "sugar approach"). Since glycomimetics are considered more selective than the parent sugars in inhibiting carbohydrate-processing enzyme, we explored the possibility of further tuning the selectivity of hCAs inhibitors by combining the sulfonamide moiety with a sugar analogue residue. In particular, we report the synthesis of two novel hCAs inhibitors 2 and 3 which feature the presence of a piperidine iminosugar and an additional carbohydrate moiety derived from levoglucosenone (1), a key intermediate derived from cellulose pyrolysis. Biological assays revealed that iminosugar 2 is a very strong inhibitor of the central nervous system (CNS) abundantly expressed hCA VII (K I of 7.4 nM) and showed a remarkable selectivity profile toward this isoform. Interestingly, the presence of levoglucosenone in glycomimetic 3 imparted a strong inhibitory activity toward the tumor associated hCA IX (K I of 35.9 nM).
Project description:In our efforts to find new and selective thiazolidinone-based anti-Candida agents, we synthesized and tested 26 thiazolidinones against several Candida spp. and Gram-positive and Gram-negative bacteria. The compounds showed selective antifungal activity with potency similar to fluconazole and clotrimazole, while lacking strong antibacterial activity. Molecular docking and molecular dynamics studies were performed on Candida CYP51a1 and carbonic anhydrase (CA) enzymes to further suggest putative targets that could mediate the antifungal effects of these compounds. Finally, the compounds were tested in enzyme inhibition assays to assess their putative mechanism of action and showed promising KI values in the 0.1-10 µM range against the Candida glabrata β-CA enzyme CgNce103.