Protein kinase D up-regulates transcription of VEGF receptor-2 in endothelial cells by suppressing nuclear localization of the transcription factor AP2?.
Ontology highlight
ABSTRACT: Vascular endothelial growth factor A (VEGF) signals primarily through its cognate receptor VEGF receptor-2 (VEGFR-2) to control vasculogenesis and angiogenesis, key physiological processes in cardiovascular disease and cancer. In human umbilical vein endothelial cells (HUVECs), knockdown of protein kinase D-1 (PKD1) or PKD2 down-regulates VEGFR-2 expression and inhibits VEGF-induced cell proliferation and migration. However, how PKD regulates VEGF signaling is unclear. Previous bioinformatics analyses have identified binding sites for the transcription factor activating enhancer-binding protein 2 (AP2) in the VEGFR-2 promoter. Using ChIP analyses, here we found that PKD knockdown in HUVECs increases binding of AP2? to the VEGFR-2 promoter. Luciferase reporter assays with serial deletions of AP2-binding sites within the VEGFR-2 promoter revealed that its transcriptional activity negatively correlates with the number of these sites. Next we demonstrated that AP2? up-regulation decreases VEGFR-2 expression and that loss of AP2? enhances VEGFR-2 expression in HUVECs. In vivo experiments confirmed increased VEGFR-2 immunostaining in the spinal cord of AP2? knockout mouse embryos. Mechanistically, we observed that PKD phosphorylates AP2? at Ser258 and Ser277 and suppresses its nuclear accumulation. Inhibition of PKD activity with a pan-PKD inhibitor increased AP2? nuclear localization, and overexpression of both WT and constitutively active PKD1 or PKD2 reduced AP2? nuclear localization through a Ser258- and Ser277-dependent mechanism. Furthermore, substitution of Ser277 in AP2? increased its binding to the VEGFR-2 promoter. Our findings uncover evidence of a molecular pathway that regulates VEGFR-2 expression, insights that may shed light on the etiology of diseases associated with aberrant VEGF/VEGFR signaling.
SUBMITTER: Wang Y
PROVIDER: S-EPMC6816101 | biostudies-literature | 2019 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA