Unknown

Dataset Information

0

Computational design and interpretation of single-RNA translation experiments.


ABSTRACT: Advances in fluorescence microscopy have introduced new assays to quantify live-cell translation dynamics at single-RNA resolution. We introduce a detailed, yet efficient sequence-based stochastic model that generates realistic synthetic data for several such assays, including Fluorescence Correlation Spectroscopy (FCS), ribosome Run-Off Assays (ROA) after Harringtonine application, and Fluorescence Recovery After Photobleaching (FRAP). We simulate these experiments under multiple imaging conditions and for thousands of human genes, and we evaluate through simulations which experiments are most likely to provide accurate estimates of elongation kinetics. Finding that FCS analyses are optimal for both short and long length genes, we integrate our model with experimental FCS data to capture the nascent protein statistics and temporal dynamics for three human genes: KDM5B, ?-actin, and H2B. Finally, we introduce a new open-source software package, RNA Sequence to NAscent Protein Simulator (rSNAPsim), to easily simulate the single-molecule translation dynamics of any gene sequence for any of these assays and for different assumptions regarding synonymous codon usage, tRNA level modifications, or ribosome pauses. rSNAPsim is implemented in Python and is available at: https://github.com/MunskyGroup/rSNAPsim.git.

SUBMITTER: Aguilera LU 

PROVIDER: S-EPMC6816579 | biostudies-literature | 2019 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Computational design and interpretation of single-RNA translation experiments.

Aguilera Luis U LU   Raymond William W   Fox Zachary R ZR   May Michael M   Djokic Elliot E   Morisaki Tatsuya T   Stasevich Timothy J TJ   Munsky Brian B  

PLoS computational biology 20191016 10


Advances in fluorescence microscopy have introduced new assays to quantify live-cell translation dynamics at single-RNA resolution. We introduce a detailed, yet efficient sequence-based stochastic model that generates realistic synthetic data for several such assays, including Fluorescence Correlation Spectroscopy (FCS), ribosome Run-Off Assays (ROA) after Harringtonine application, and Fluorescence Recovery After Photobleaching (FRAP). We simulate these experiments under multiple imaging condit  ...[more]

Similar Datasets

| S-EPMC4823857 | biostudies-literature
| S-EPMC6551246 | biostudies-literature
| S-EPMC5558699 | biostudies-literature
| S-EPMC2572921 | biostudies-literature
| S-EPMC7599215 | biostudies-literature
| S-EPMC8624234 | biostudies-literature
| S-EPMC9237024 | biostudies-literature
| S-EPMC3025009 | biostudies-literature
| S-EPMC5376499 | biostudies-literature
| S-EPMC9302581 | biostudies-literature