Unknown

Dataset Information

0

Underpinning the Interaction between NO2 and CuO Nanoplatelets at Room Temperature by Tailoring Synthesis Reaction Base and Time.


ABSTRACT: An approach to tailor the morphology and sensing characteristics of CuO nanoplatelets for selective detection of NO2 gas is of great significance and an important step toward achieving the challenge of improving air quality and in assuring the safety of mining operations. As a result, in this study, we report on the NO2 room temperature gas-sensing characteristics of CuO nanoplatelets and the underlying mechanism toward the gas-sensing performance by altering the synthesis reaction base and time. High sensitivity of ?40 ppm-1 to NO2 gas at room temperature has been realized for gas sensors fabricated from CuO nanoplatelets, using NaOH as base for reaction times of 45 and 60 min, respectively at 75 °C. In both cases, the crystallite size, surface area, and hole concentration of the respective materials influenced the selectivity and sensitivity of the NO2 gas sensors. The mechanism underpinning the superior NO2 gas sensing are thoroughly discussed in terms of the crystallite size, hole concentration, and surface area as active sites for gas adsorption.

SUBMITTER: Oosthuizen DN 

PROVIDER: S-EPMC6843718 | biostudies-literature | 2019 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Underpinning the Interaction between NO<sub>2</sub> and CuO Nanoplatelets at Room Temperature by Tailoring Synthesis Reaction Base and Time.

Oosthuizen Dina N DN   Motaung David E DE   Strydom André M AM   Swart Hendrik C HC  

ACS omega 20191023 19


An approach to tailor the morphology and sensing characteristics of CuO nanoplatelets for selective detection of NO<sub>2</sub> gas is of great significance and an important step toward achieving the challenge of improving air quality and in assuring the safety of mining operations. As a result, in this study, we report on the NO<sub>2</sub> room temperature gas-sensing characteristics of CuO nanoplatelets and the underlying mechanism toward the gas-sensing performance by altering the synthesis  ...[more]

Similar Datasets

| S-EPMC6578340 | biostudies-literature
| S-EPMC6603724 | biostudies-literature
| S-EPMC9218774 | biostudies-literature
| S-EPMC6732984 | biostudies-literature
| S-EPMC8272026 | biostudies-literature
| S-EPMC4987678 | biostudies-literature
| S-EPMC6897546 | biostudies-literature
| S-EPMC11293367 | biostudies-literature
| S-EPMC8222270 | biostudies-literature
| S-EPMC8364736 | biostudies-literature