Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films.
Ontology highlight
ABSTRACT: The efficiencies of small-pixel perovskite photovoltaics have increased to above 24%, while most reported fabrication methods cannot be transferred to scalable manufacturing process. Here, we report a method of fast blading large-area perovskite films at an unprecedented speed of 99 mm/s under ambient conditions by tailoring solvent coordination capability. Combing volatile noncoordinating solvents to Pb2+ and low-volatile, coordinating solvents achieves both fast drying and large perovskite grains at room temperature. The reproducible fabrication yields a certified module efficiency of 16.4%, with an aperture area of 63.7 cm2. This method can be applied for various perovskite compositions. The perovskite modules also show a small temperature coefficient of -0.13%/°C and nearly fully recoverable efficiency after 58 cycles of shading, much better than commercial silicon and thin-film solar modules.
SUBMITTER: Deng Y
PROVIDER: S-EPMC6897546 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA