ABSTRACT: Molecular uranium nitride complexes were prepared to relate their small molecule reactivity to the nature of the U[double bond, length as m-dash]N[double bond, length as m-dash]U bonding imposed by the supporting ligand. The U4+-U4+ nitride complexes, [NBu4][{(( t BuO)3SiO)3U}2(?-N)], [NBu4]-1, and [NBu4][((Me3Si)2N)3U}2(?-N)], 2, were synthesised by reacting NBu4N3 with the U3+ complexes, [U(OSi(O t Bu)3)2(?-OSi(O t Bu)3)]2 and [U(N(SiMe3)2)3], respectively. Oxidation of 2 with AgBPh4 gave the U4+-U5+ analogue, [((Me3Si)2N)3U}2(?-N)], 4. The previously reported methylene-bridged U4+-U4+ nitride [Na(dme)3][((Me3Si)2)2U(?-N)(?-?2-C,N-CH2SiMe2NSiMe3)U(N(SiMe3)2)2] (dme = 1,2-dimethoxyethane), [Na(dme)3]-3, provided a versatile precursor for the synthesis of the mixed-ligand U4+-U4+ nitride complex, [Na(dme)3][((Me3Si)2N)3U(?-N)U(N(SiMe3)2)(OSi(O t Bu)3)], 5. The reactivity of the 1-5 complexes was assessed with CO2, CO, and H2. Complex [NBu4]-1 displays similar reactivity to the previously reported heterobimetallic complex, [Cs{(( t BuO)3SiO)3U}2(?-N)], [Cs]-1, whereas the amide complexes 2 and 4 are unreactive with these substrates. The mixed-ligand complexes 3 and 5 react with CO and CO2 but not H2. The nitride complexes [NBu4]-1, 2, 4, and 5 along with their small molecule activation products were structurally characterized. Magnetic data measured for the all-siloxide complexes [NBu4]-1 and [Cs]-1 show uncoupled uranium centers, while strong antiferromagnetic coupling was found in complexes containing amide ligands, namely 2 and 5 (with maxima in the ? versus T plot of 90 K and 55 K). Computational analysis indicates that the U(?-N) bond order decreases with the introduction of oxygen-based ligands effectively increasing the nucleophilicity of the bridging nitride.