Unknown

Dataset Information

0

3D Myocardial Scar Prediction Model Derived from Multimodality Analysis of Electromechanical Mapping and Magnetic Resonance Imaging.


ABSTRACT: Many cardiac catheter interventions require accurate discrimination between healthy and infarcted myocardia. The gold standard for infarct imaging is late gadolinium-enhanced MRI (LGE-MRI), but during cardiac procedures electroanatomical or electromechanical mapping (EAM or EMM, respectively) is usually employed. We aimed to improve the ability of EMM to identify myocardial infarction by combining multiple EMM parameters in a statistical model. From a porcine infarction model, 3D electromechanical maps were 3D registered to LGE-MRI. A multivariable mixed-effects logistic regression model was fitted to predict the presence of infarct based on EMM parameters. Furthermore, we correlated feature-tracking strain parameters to EMM measures of local mechanical deformation. We registered 787 EMM points from 13 animals to the corresponding MRI locations. The mean registration error was 2.5?±?1.16 mm. Our model showed a strong ability to predict the presence of infarction (C-statistic?=?0.85). Strain parameters were only weakly correlated to EMM measures. The model is accurate in discriminating infarcted from healthy myocardium. Unipolar and bipolar voltages were the strongest predictors.

SUBMITTER: van den Broek HT 

PROVIDER: S-EPMC6854049 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

3D Myocardial Scar Prediction Model Derived from Multimodality Analysis of Electromechanical Mapping and Magnetic Resonance Imaging.

van den Broek Hans Thijs HT   Wenker Steven S   van de Leur Rutger R   Doevendans Pieter A PA   Chamuleau Steven A J SAJ   van Slochteren Frebus J FJ   van Es René R  

Journal of cardiovascular translational research 20190723 6


Many cardiac catheter interventions require accurate discrimination between healthy and infarcted myocardia. The gold standard for infarct imaging is late gadolinium-enhanced MRI (LGE-MRI), but during cardiac procedures electroanatomical or electromechanical mapping (EAM or EMM, respectively) is usually employed. We aimed to improve the ability of EMM to identify myocardial infarction by combining multiple EMM parameters in a statistical model. From a porcine infarction model, 3D electromechanic  ...[more]

Similar Datasets

| S-EPMC6321957 | biostudies-literature
| S-EPMC3311142 | biostudies-literature
| S-EPMC3864907 | biostudies-literature
| S-EPMC11352018 | biostudies-literature
| S-EPMC6037289 | biostudies-literature
| S-EPMC6207200 | biostudies-literature
| S-EPMC4482648 | biostudies-literature
| S-EPMC7047169 | biostudies-literature
| S-EPMC4158672 | biostudies-literature
| S-EPMC5863465 | biostudies-literature