Project description:BackgroundBronchopulmonary dysplasia (BPD) is the most common respiratory complication in preterm infants, and there is a lag in the diagnosis of BPD. Inflammation is a vital pathogenic factor for BPD; we aim to evaluate the predictive and diagnostic values of systemic inflammatory indices in BPD.MethodsBetween 1 January 2019 and 31 May 2023, the clinical data of 122 premature infants with a gestational age of <32 weeks in the Department of Neonatology, the Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, were retrospectively collected and classified into non-BPD (n = 72) and BPD (n = 50) groups based on the National Institute of Child Health and Human Development 2018 criteria. To compare the general characteristics of each group, we identified the independent risk variables for BPD using multivariate logistic regression analysis, compared the systemic inflammatory indices at birth, 72 h, 1 week, 2 weeks, and 36 weeks postmenstrual age (PMA), and constructed the receiver operating characteristic curves of neutrophil-to-lymphocyte ratio (NLR) diagnosis of BPD at different time points.Results① The independent risk factors for BPD in preterm infants were birth weight, small for gestational age, and days of oxygen therapy (all p < 0.05). ② At 72 h and 1 week after birth, the serum NLR of the BPD group was higher than for the non-BPD group (p < 0.05). Furthermore, the neutrophil count (N), NLR, monocyte-to-lymphocyte ratio (MLR), systemic immune-inflammation index, systemic inflammation response index (SIRI), and pan-immune-inflammation value of infants with BPD were higher than the non-BPD group at 3 weeks after birth (p < 0.05). Moreover, at 36 weeks of PMA, the serum N, NLR, MLR, and SIRI of BPD infants were higher than those of non-BPD infants (p < 0.05). ③ The NLR of infants with and without BPD gradually increased after birth, reaching a peak at 72 h and 1 week, respectively. At 3 weeks postnatal, the NLR had the highest predictive power for BPD, with an area under the curve (AUC) of 0.717 (p < 0.001); the sensitivity was 56% and specificity was 86.1%. In addition, the NLR at 36 weeks of PMA exhibited some diagnostic value for BPD. The AUC was 0.693 (p < 0.001), the sensitivity was 54%, and specificity was 83.3%.ConclusionsAt 3 weeks after birth and 36 weeks of PMA, some systemic inflammation indices (like N, NLR, SIRI) of preterm infants with BPD have specific predictive and diagnostic values; these indices may help the management of high-risk preterm infants with BPD.
Project description:ObjectiveTo quantify and compare levels of potential biomarkers in neonates with (i) Bronchopulmonary dysplasia (BPD); (ii) BPD-associated pulmonary hypertension (BPD-PH); (iii) PH without BPD; and (iv) neonates without lung disease at ~36 weeks postmenstrual age.Study designMultiple potential biomarkers were measured in plasma samples of 90 patients using a multi-spot enzyme-linked immunosorbent assay. Statistical tests done included one-way ANOVA to compare levels of biomarkers between different groups.ResultsHigher levels of ICAM-1 were present in infants with BPD and correlated with its severity. Infants with BPD have significantly higher levels of ANG-2 and lower levels of ANG-1. Infants with PH have higher levels of: IL-6, IL-8, IL-10, and TNF-α. Infants with BPD-PH have significantly lower levels of MCP-1 and higher levels of IL-1β than infants with PH without BPD.ConclusionICAM-1 may be used as a specific biomarker for diagnosis of BPD and its severity.
Project description:ObjectiveTo provide an overview and critical appraisal of prediction models for bronchopulmonary dysplasia (BPD) in preterm infants.MethodsWe searched PubMed, Embase, and the Cochrane Library to identify relevant studies (up to November 2021). We included studies that reported prediction model development and/or validation of BPD in preterm infants born at ≤32 weeks and/or ≤1,500 g birth weight. We extracted the data independently based on the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS). We assessed risk of bias and applicability independently using the Prediction model Risk Of Bias ASsessment Tool (PROBAST).ResultsTwenty-one prediction models from 13 studies reporting on model development and 21 models from 10 studies reporting on external validation were included. Oxygen dependency at 36 weeks' postmenstrual age was the most frequently reported outcome in both development studies (71%) and validation studies (81%). The most frequently used predictors in the models were birth weight (67%), gestational age (62%), and sex (52%). Nearly all included studies had high risk of bias, most often due to inadequate analysis. Small sample sizes and insufficient event patients were common in both study types. Missing data were often not reported or were discarded. Most studies reported on the models' discrimination, while calibration was seldom assessed (development, 19%; validation, 10%). Internal validation was lacking in 69% of development studies.ConclusionThe included studies had many methodological shortcomings. Future work should focus on following the recommended approaches for developing and validating BPD prediction models.
Project description:RationaleBenefits of identifying risk factors for bronchopulmonary dysplasia in extremely premature infants include providing prognostic information, identifying infants likely to benefit from preventive strategies, and stratifying infants for clinical trial enrollment.ObjectivesTo identify risk factors for bronchopulmonary dysplasia, and the competing outcome of death, by postnatal day; to identify which risk factors improve prediction; and to develop a Web-based estimator using readily available clinical information to predict risk of bronchopulmonary dysplasia or death.MethodsWe assessed infants of 23-30 weeks' gestation born in 17 centers of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network and enrolled in the Neonatal Research Network Benchmarking Trial from 2000-2004.Measurements and main resultsBronchopulmonary dysplasia was defined as a categorical variable (none, mild, moderate, or severe). We developed and validated models for bronchopulmonary dysplasia risk at six postnatal ages using gestational age, birth weight, race and ethnicity, sex, respiratory support, and Fi(O(2)), and examined the models using a C statistic (area under the curve). A total of 3,636 infants were eligible for this study. Prediction improved with advancing postnatal age, increasing from a C statistic of 0.793 on Day 1 to a maximum of 0.854 on Day 28. On Postnatal Days 1 and 3, gestational age best improved outcome prediction; on Postnatal Days 7, 14, 21, and 28, type of respiratory support did so. A Web-based model providing predicted estimates for bronchopulmonary dysplasia by postnatal day is available at https://neonatal.rti.org.ConclusionsThe probability of bronchopulmonary dysplasia in extremely premature infants can be determined accurately using a limited amount of readily available clinical information.
Project description:Objective: To identify postnatal risk factors for bronchopulmonary dysplasia (BPD) development in preterm infants with gestational age ≤32 weeks. Methods: Seventy-two preterm infants(30 with BPD and 42 non-BPD controls) admitted in the neonatal intensive care unit (NICU) of the Children's Hospital of Soochow University during 2017 were enrolled in this prospective longitudinal study. Perinatal clinical data, a neonatal critical illness score (NCIS), different soluble B7-H3(sB7-H3), and interleukin-18 (IL-18) levels by days after birth were collected. An early predictive model for BPD development was established based on clinical data using multiple logistic regression analysis. And the sensitivity and specificity of the model were assesed by ROC curve. Results: Electrolyte disturbances, hemodynamically significant patent ductus arteriosus (hs-PDA), and the age that infants achieved 120 kcal/kg.d via enteral feeding ≥40 days after birth were found to be associated with the BPD pathogenesis. Serum sB7-H3, IL-18, and NCIS were significantly higher in the BPD group compared to the non-BPD group (p < 0.05). BPD group had significantly lower enteral fluid and caloric intake compared to the non-BPD group at 1, 7, 14, and 28 days after birth. The risk factors were analyzed by multiple logistic regression and a predictive model of a combination of sB7-H3 (day 7), IL-18 (day 14), NCIS, and clinical risk factors was evaluated via ROC curve with an area under the curve (AUC) of 0.960 having sensitivity of 86.7% and a specificity of 97.6%, respectively. Conclusion: The causes of BPD are multifactorial postnatal risk factors. And the combination of sB7-H3 (day 7), IL-18 (day 14), NCIS, and clinical risk factors (electrolyte disturbances, hs-PDA, and the age that infants achieved 120 kcal/kg.d via enteral feeding ≥40 days after birth) might be served as an optimal predictive model for the occurrence of BPD.
Project description:Unlike other complications among very low birth weight infants (VLBW), the incidence of bronchopulmonary dysplasia (BPD) has not decreased substantially, partly because of the different definitions of BPD applied by different researchers. In this retrospective cohort study, we aimed to compare the 2018 revised definition and the 2001 consensus definition of BPD proposed by the National Institute of Child Health and Human Development (NICHD), as well as to identify which definition better predicts severe respiratory morbidities or death. We included 417 infants born at a gestational age <32 weeks and classified them as having BPD or without BPD based on the two definitions, with a final follow-up at 18-24 months. We performed between-group comparisons of death and respiratory outcomes. Statistical analyses were performed using descriptive statistics, comparative tests, and receiver operating characteristic curves. The mean ± standard deviation gestational age and birth weight of the 417 eligible infants were 29.1 ± 1.4 weeks and 1186.6 ± 197.8 g, respectively. Among the included infants, five and three infants died before and after 36 weeks of post-menstrual age (PMA), respectively, with 68 and 344 infants evaluated at discharge and 36 weeks' PMA, respectively. We diagnosed 163 (39.1%) and 70 (16.8%) infants with BPD according to the 2001 and 2018 NICHD definitions, respectively. The 2001 NICHD definition displayed a higher sensitivity (0.60 vs. 0.28), better negative predictive value (0.89 vs. 0.85), and larger area under the receiver operating characteristic curve (0.66 vs. 0.57), but a lower specificity (0.65 vs. 0.87) and worse positive predictive value (0.26 vs. 0.31), than the 2018 definition for serious respiratory morbidity or mortality at a corrected age of 18-24 months. Compared with the 2018 NICHD definition of BPD, the 2001 NICHD consensus definition may result in more cases of false-positive or unclassified severity. However, it may be a better indicator of severe respiratory morbidities or death during the first 18-24 months. Nevertheless, there is a need for future studies to assess the validity of the new diagnostic criteria.
Project description:BackgroundTo assess the prognostic value of early echocardiographic indices of right ventricular function and vasoactive peptides for prediction of bronchopulmonary dysplasia (BPD) or death in very preterm infants.MethodsProspective study involving 294 very preterm infants (median [IQR] gestational age 28.4 [26.4-30.4] weeks, birth weight 1065 [800-1380] g), of whom 57 developed BPD (oxygen supplementation at 36 weeks postmenstrual age) and 10 died. Tricuspid annular plane systolic excursion (TAPSE), right ventricular index of myocardial performance (RIMP), plasma concentrations of mid-regional pro-atrial natriuretic peptide (MR-proANP) and C-terminal pro-endothelin-1 (CT-proET1) were measured on day 7 of life.ResultsRIMP was significantly increased (median [IQR] 0.3 [0.23-0.38] vs 0.22 [0.15-0.29]), TAPSE decreased (median [IQR] 5.0 [5.0-6.0] vs 6.0 [5.4-7.0] mm), MR-proANP increased (median [IQR] 784 [540-936] vs 353 [247-625] pmol/L), and CT-proET1 increased (median [IQR] 249 [190-345] vs 199 [158-284] pmol/L) in infants who developed BPD or died, as compared to controls. All variables showed significant but weak correlations with each other (rS -0.182 to 0.359) and predicted BPD/death with similar accuracy (areas under receiver operator characteristic curves 0.62 to 0.77). Multiple regression revealed only RIMP and birth weight as independent predictors of BPD or death.ConclusionsVasoactive peptide concentrations and echocardiographic assessment employing standardized measures, notably RIMP, on day 7 of life are useful to identify preterm infants at increased risk for BPD or death.
Project description:To develop an accurate, proxy-reported bedside measurement tool for assessment of the severity of bronchopulmonary dysplasia (also called chronic lung disease) in preterm infants to supplement providers' current biometric measurements of the disease.We adapted Patient-Reported Outcomes Measurement Information System (PROMIS) methodology to develop the Proxy-Reported Pulmonary Outcomes Scale (PRPOS). A multidisciplinary group of registered nurses, nurse practitioners, neonatologists, developmental specialists, and feeding specialists at five academic medical centers participated in the PRPOS development, which included five phases: (1) identification of domains, items, and responses; (2) item classification and selection using a modified Delphi process; (3) focus group exploration of items and response options; (4) cognitive interviews on a preliminary scale; and (5) final revision before field testing.Each phase of the process helped us to identify, classify, review, and revise possible domains, questions, and response options. The final items for field testing include 26 questions or observations that a nurse assesses before, during, and after routine care time and feeding.We successfully created a prototype scale using modified PROMIS methodology. This process can serve as a model for the development of proxy-reported outcomes scales in other pediatric populations.
Project description:Bronchopulmonary dysplasia (BPD) is a major complication in prematurely born infants. Pulmonary hypertension (PH) associated with BPD (BPD-PH) is characterized by alveolar diffusion impairment, abnormal vascular remodeling, and rarefication of pulmonary vessels (vascular growth arrest), which lead to increased pulmonary vascular resistance and right heart failure. About 25% of infants with moderate to severe BPD develop BPD-PH that is associated with high morbidity and mortality. The recent evolution of broader PH-targeted pharmacotherapy in adults has opened up new treatment options for infants with BPD-PH. Sildenafil became the mainstay of contemporary BPD-PH therapy. Additional medications, such as endothelin receptor antagonists and prostacyclin analogs/mimetics, are increasingly being investigated in infants with PH. However, pediatric data from prospective or randomized controlled trials are still sparse. We discuss comprehensive diagnostic and therapeutic strategies for BPD-PH and briefly review the relevant differential diagnoses of parenchymal and interstitial developmental lung diseases. In addition, we provide a practical framework for the management of children with BPD-PH, incorporating the modified definition and classification of pediatric PH from the 2018 World Symposium on Pulmonary Hypertension, and the 2019 EPPVDN consensus recommendations on established and newly developed therapeutic strategies. Finally, current gaps of knowledge and future research directions are discussed. IMPACT: PH in BPD substantially increases mortality. Treatment of BPD-PH should be conducted by an interdisciplinary team and follow our new treatment algorithm while still kept tailored to the individual patient. We discuss recent developments in BPD-PH, make recommendations on diagnosis, monitoring and treatment of PH in BPD, and address current gaps of knowledge and potential research directions. We provide a practical framework, including a new treatment algorithm, for the management of children with BPD-PH, incorporating the modified definition and classification of pediatric PH (2018 WSPH) and the 2019 EPPVDN consensus recommendations on established and newly developed therapeutic strategies for BPD-PH.
Project description:The objective of this study is to review the candidate gene and genome-wide association studies relevant to bronchopulmonary dysplasia, and to discuss the emerging understanding of the complexities involved in genetic predisposition to bronchopulmonary dysplasia and its outcomes. Genetic factors contribute much of the variance in risk for BPD. Studies to date evaluating single or a few candidate genes have not been successful in yielding results that are replicated in GWAS, perhaps due to more stringent p-value thresholds. GWAS studies have identified only a single gene (SPOCK2) at genome-wide significance in a European White and African cohort, which was not replicated in two North American studies. Pathway gene-set analysis in a North American cohort confirmed involvement of known pathways of lung development and repair (e.g., CD44 and phosphorus oxygen lyase activity) and indicated novel molecules and pathways (e.g., adenosine deaminase and targets of miR-219) involved in genetic predisposition to BPD. The genetic basis of severe BPD is different from that of mild/moderate BPD, and the variants/pathways associated with BPD vary by race/ethnicity. A pilot study of whole exome sequencing identified hundreds of genes of interest, and indicated the overall feasibility as well as complexity of this approach. Better phenotyping of BPD by severity and pathophysiology, and careful analysis of race/ethnicity is required to gain a better understanding of the genetic basis of BPD. Future translational studies are required for the identification of potential genetic predispositions (rare variants and dysregulated pathways) by next-generation sequencing methods in individual infants (personalized genomics).