Unknown

Dataset Information

0

Structural biology of thermoTRPV channels.


ABSTRACT: Essential for physiology, transient receptor potential (TRP) channels constitute a large and diverse family of cation channels functioning as cellular sensors responding to a vast array of physical and chemical stimuli. Detailed understanding of the inner workings of TRP channels has been hampered by a lack of atomic structures, though structural biology of TRP channels has been an enthusiastic endeavor since their molecular identification two decades ago. These multi-domain integral membrane proteins, exhibiting complex polymodal gating behavior, have been a challenge for traditional X-ray crystallography, which requires formation of well-ordered protein crystals. X-ray structures remain limited to a few TRP channel proteins to date. Fortunately, recent breakthroughs in single-particle cryo-electron microscopy (cryo-EM) have enabled rapid growth of the number of TRP channel structures, providing tremendous insights into channel gating and regulation mechanisms and serving as foundations for further mechanistic investigations. This brief review focuses on recent exciting developments in structural biology of a subset of TRP channels, the calcium-permeable, non-selective and thermosensitive vanilloid subfamily of TRP channels (TRPV1-4), and the permeation and gating mechanisms revealed by structures.

SUBMITTER: Yuan P 

PROVIDER: S-EPMC6893863 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structural biology of thermoTRPV channels.

Yuan Peng P  

Cell calcium 20191101


Essential for physiology, transient receptor potential (TRP) channels constitute a large and diverse family of cation channels functioning as cellular sensors responding to a vast array of physical and chemical stimuli. Detailed understanding of the inner workings of TRP channels has been hampered by a lack of atomic structures, though structural biology of TRP channels has been an enthusiastic endeavor since their molecular identification two decades ago. These multi-domain integral membrane pr  ...[more]

Similar Datasets

| S-EPMC4356010 | biostudies-literature
| S-EPMC5075240 | biostudies-literature
| S-EPMC8203844 | biostudies-literature
| S-EPMC7149786 | biostudies-literature
| S-EPMC6744579 | biostudies-literature
| S-EPMC6886448 | biostudies-literature
2013-06-20 | E-GEOD-42675 | biostudies-arrayexpress
| S-EPMC4484874 | biostudies-literature
2013-06-20 | GSE42675 | GEO
| S-EPMC2664619 | biostudies-literature