A selective small-molecule inhibitor of macrophage migration inhibitory factor-2 (MIF-2), a MIF cytokine superfamily member, inhibits MIF-2 biological activity.
Ontology highlight
ABSTRACT: Cytokine macrophage migration inhibitory factor-2 (MIF-2 or D-dopachrome tautomerase) is a recently characterized second member of the MIF cytokine superfamily in mammalian genomes. MIF-2 shares pro-inflammatory and tumorigenic properties with the clinical target MIF (MIF-1), but the precise contribution of MIF-2 to immune physiology or pathology is unclear. Like MIF-1, MIF-2 has intrinsic keto-enol tautomerase activity and mediates biological functions by engaging the cognate, common MIF family receptor CD74. Evidence that the catalytic site of MIF family cytokines has a structural role in receptor binding has prompted exploration of tautomerase inhibitors as potential biological antagonists and therapeutic agents, although few catalytic inhibitors inhibit receptor activation. Here we describe the discovery and biochemical characterization of a selective small-molecule inhibitor of MIF-2. An in silico screen of 1.6 million compounds targeting the MIF-2 tautomerase site yielded several hits for potential catalytic inhibitors of MIF-2 and identified 4-(3-carboxyphenyl)-2,5-pyridinedicarboxylic acid (4-CPPC) as the most functionally potent compound. We found that 4-CPPC has an enzymatic IC50 of 27 ?m and 17-fold selectivity for MIF-2 versus MIF-1. An in vitro binding assay for MIF-1/MIF-2 to the CD74 ectodomain (sCD74) indicated that 4-CPPC inhibits MIF-2-CD74 binding in a dose-dependent manner (0.01-10 ?m) without influencing MIF-1-CD74 binding. Notably, 4-CPPC inhibited MIF-2-mediated activation of CD74 and reduced CD74-dependent signal transduction. These results open opportunities for development of more potent and pharmacologically auspicious MIF-2 inhibitors to investigate the distinct functions of this MIF family member in vivo.
SUBMITTER: Tilstam PV
PROVIDER: S-EPMC6901300 | biostudies-literature | 2019 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA