Ontology highlight
ABSTRACT: Background
Little is known regarding the functional role of microRNA-410 (miR-410) in osteonecrosis of the femoral head (ONFH); hence, the aim of the present study was to investigate miR-410 targeting Wnt-11 to modulate the osteogenic and osteoclastic mechanism in the prevention of ONFH.Methods
Fifteen ONFH samples and 15 normal samples were gathered. The pathological changes of the femoral head, osteoblasts, and osteoclasts in the clinical samples were observed. The rat model of ONFH was injected with agomir-miR-410, Wnt-11-siRNA, or oe-Wnt-11. MiR-410; Wnt-11; osteoblast-related factors alkaline phosphatase (ALP), bone gamma-carboxyglutamate protein (BGLAP), and Coll?1 expression; and osteoclast-related factors acid phosphatase 5 (ACP5), cathepsin K (CTSK), and MMP9, as well as Bcl-2 and Bax expression, were tested by RT-qPCR and western blot analysis. The osteogenic function index ALP and OCN together with osteoclast function index NTX-1 and CTX-1 in serum was tested by ELISA.Results
MiR-410, ALP, BGLAP, and Coll?1 degraded as well as Wnt-11, ACP5, CTSK, and MMP9 enhanced in ONFH tissues of the clinical samples. Upregulated miR-410 and downregulated Wnt-11 enhanced bone mineral density (BMD) and BV/TV of rats, heightened the BMD level of the femoral shaft, femoral head, and spinal column, and also raised the serum calcium and phosphorus levels of rats, while restrained apoptosis of osteocytes, elevated OCN, ALP, BGLAP, and Coll?1 expression and declined ACP5, CTSK, NTX-1, CTX-1, and MMP9 expression in rats.Conclusion
This study suggested that upregulating miR-410 or downregulating Wnt-11 increases osteoblasts and reduces osteoclasts to alleviate the occurrence of ONFH. Thus, miR-410 may serve as a potential target for the treatment of ONFH.
SUBMITTER: Yin Y
PROVIDER: S-EPMC6920280 | biostudies-literature | 2019 Dec
REPOSITORIES: biostudies-literature
Yin Yukun Y Ding Lixiang L Hou Yu Y Jiang Haoran H Zhang Ji J Dai Zhong Z Zhang Genai G
Nanoscale research letters 20191218 1
<h4>Background</h4>Little is known regarding the functional role of microRNA-410 (miR-410) in osteonecrosis of the femoral head (ONFH); hence, the aim of the present study was to investigate miR-410 targeting Wnt-11 to modulate the osteogenic and osteoclastic mechanism in the prevention of ONFH.<h4>Methods</h4>Fifteen ONFH samples and 15 normal samples were gathered. The pathological changes of the femoral head, osteoblasts, and osteoclasts in the clinical samples were observed. The rat model of ...[more]