Ontology highlight
ABSTRACT:
SUBMITTER: Fukuma R
PROVIDER: S-EPMC6937237 | biostudies-literature | 2019 Dec
REPOSITORIES: biostudies-literature
Fukuma Ryohei R Yanagisawa Takufumi T Kinoshita Manabu M Shinozaki Takashi T Arita Hideyuki H Kawaguchi Atsushi A Takahashi Masamichi M Narita Yoshitaka Y Terakawa Yuzo Y Tsuyuguchi Naohiro N Okita Yoshiko Y Nonaka Masahiro M Moriuchi Shusuke S Takagaki Masatoshi M Fujimoto Yasunori Y Fukai Junya J Izumoto Shuichi S Ishibashi Kenichi K Nakajima Yoshikazu Y Shofuda Tomoko T Kanematsu Daisuke D Yoshioka Ema E Kodama Yoshinori Y Mano Masayuki M Mori Kanji K Ichimura Koichi K Kanemura Yonehiro Y Kishima Haruhiko H
Scientific reports 20191230 1
Identification of genotypes is crucial for treatment of glioma. Here, we developed a method to predict tumor genotypes using a pretrained convolutional neural network (CNN) from magnetic resonance (MR) images and compared the accuracy to that of a diagnosis based on conventional radiomic features and patient age. Multisite preoperative MR images of 164 patients with grade II/III glioma were grouped by IDH and TERT promoter (pTERT) mutations as follows: (1) IDH wild type, (2) IDH and pTERT co-mut ...[more]