Unknown

Dataset Information

0

Targeting Histone Chaperone FACT Complex Overcomes 5-Fluorouracil Resistance in Colon Cancer.


ABSTRACT: Fluorouracil (5-FU) remains a first-line chemotherapeutic agent for colorectal cancer. However, a subset of colorectal cancer patients who have defective mismatch-repair (dMMR) pathway show resistance to 5-FU. Here, we demonstrate that the efficacy of 5-FU in dMMR colorectal cancer cells is largely dependent on the DNA base excision repair (BER) pathway. Downregulation of APE1, a key enzyme in the BER pathway, decreases IC50 of 5-FU in dMMR colorectal cancer cells by 10-fold. Furthermore, we discover that the facilitates chromatin transcription (FACT) complex facilitates 5-FU repair in DNA via promoting the recruitment and acetylation of APE1 (AcAPE1) to damage sites in chromatin. Downregulation of FACT affects 5-FU damage repair in DNA and sensitizes dMMR colorectal cancer cells to 5-FU. Targeting the FACT complex with curaxins, a class of small molecules, significantly improves the 5-FU efficacy in dMMR colorectal cancer in vitro (?50-fold decrease in IC50) and in vivo xenograft models. We show that primary tumor tissues of colorectal cancer patients have higher FACT and AcAPE1 levels compared with adjacent nontumor tissues. Additionally, there is a strong clinical correlation of FACT and AcAPE1 levels with colorectal cancer patients' response to chemotherapy. Together, our study demonstrates that targeting FACT with curaxins is a promising strategy to overcome 5-FU resistance in dMMR colorectal cancer patients.

SUBMITTER: Song H 

PROVIDER: S-EPMC6946866 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Targeting Histone Chaperone FACT Complex Overcomes 5-Fluorouracil Resistance in Colon Cancer.

Song Heyu H   Zeng Jiping J   Roychoudhury Shrabasti S   Biswas Pranjal P   Mohapatra Bhopal B   Ray Sutapa S   Dowlatshahi Kayvon K   Wang Jing J   Band Vimla V   Talmon Geoffrey G   Bhakat Kishor K KK  

Molecular cancer therapeutics 20191001 1


Fluorouracil (5-FU) remains a first-line chemotherapeutic agent for colorectal cancer. However, a subset of colorectal cancer patients who have defective mismatch-repair (dMMR) pathway show resistance to 5-FU. Here, we demonstrate that the efficacy of 5-FU in dMMR colorectal cancer cells is largely dependent on the DNA base excision repair (BER) pathway. Downregulation of APE1, a key enzyme in the BER pathway, decreases IC<sub>50</sub> of 5-FU in dMMR colorectal cancer cells by 10-fold. Furtherm  ...[more]

Similar Datasets

| S-EPMC6336835 | biostudies-literature
| S-EPMC4873320 | biostudies-literature
| S-EPMC6207083 | biostudies-literature
| S-EPMC4911930 | biostudies-literature
| S-EPMC5534098 | biostudies-literature
2015-08-13 | E-GEOD-71981 | biostudies-arrayexpress
| S-EPMC9076011 | biostudies-literature
| S-EPMC5018545 | biostudies-literature
| S-EPMC6734664 | biostudies-literature
| S-EPMC9467567 | biostudies-literature