DNA-Mediated Assembly of Multispecific Antibodies for T Cell Engaging and Tumor Killing.
Ontology highlight
ABSTRACT: Targeting T-cells against cancer cells is a direct means of treating cancer, and has already shown great responses in clinical treatment of B-cell malignancies. A simple way to redirect T-cells to cancer cells is by using multispecific antibody (MsAb) that contains different arms for specifically "grabbing" the T-cells and cancer cells; as such, the T-cells are activated upon target engagement and the killing begins. Here, a nucleic acid mediated protein-protein assembly (NAPPA) approach is implemented to construct a MsAb for T-cell engaging and tumor killing. Anti -CD19 and -CD3 single-chain variable fragments (scFvs) are conjugated to different l-DNAs with sequences that form the Holliday junction, thus allowing spontaneous assembly of homogeneous protein-DNA oligomers containing two anti-CD19 and one anti-CD3 scFvs. The new MsAb shows strong efficacy in inducing Raji tumor cell cytotoxicity in the presence of T-cells with EC50 ≈ 0.2 × 10-9 m; it also suppresses tumor growth in a Raji xenograft mouse model. The data indicates that MsAbs assembled from protein-DNA conjugates are effective macromolecules for directing T-cells for tumor killing. The modular nature of the NAPPA platform allows rapid generation of complex MsAbs from simple antibody fragments, while offering a general solution for preparing antibodies with high-order specificity.
SUBMITTER: Pan L
PROVIDER: S-EPMC6974939 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA