Intramuscular vaccination of mice with the human herpes simplex virus type-1(HSV-1) VC2 vaccine, but not its parental strain HSV-1(F) confers full protection against lethal ocular HSV-1 (McKrae) pathogenesis.
Ontology highlight
ABSTRACT: Herpes simplex virus type-1 (HSV-1) can cause severe ocular infection and blindness. We have previously shown that the HSV-1 VC2 vaccine strain is protective in mice and guinea pigs against genital herpes infection following vaginal challenge with HSV-1 or HSV-2. In this study, we evaluated the efficacy of VC2 intramuscular vaccination in mice against herpetic keratitis following ocular challenge with lethal human clinical strain HSV-1(McKrae). VC2 vaccination in mice produced superior protection and morbidity control in comparison to its parental strain HSV-1(F). Specifically, after HSV-1(McKrae) ocular challenge, all VC2 vaccinated- mice survived, while 30% of the HSV-1(F)- vaccinated and 100% of the mock-vaccinated mice died post challenge. VC2-vaccinated mice did not exhibit any symptoms of ocular infection and completely recovered from initial conjunctivitis. In contrast, HSV-1(F)-vaccinated mice developed time-dependent progressive keratitis characterized by corneal opacification, while mock-vaccinated animals exhibited more severe stromal keratitis characterized by immune cell infiltration and neovascularization in corneal stroma with corneal opacification. Cornea in VC2-immunized mice exhibited significantly increased infiltration of CD3+ T lymphocytes and decreased infiltration of Iba1+ macrophages in comparison to mock- or HSV-1(F)-vaccinated groups. VC2 immunization produced higher virus neutralization titers than HSV-1(F) post challenge. Furthermore, VC-vaccination significantly increased the CD4 T central memory (TCM) subsets and CD8 T effector memory (TEM) subsets in the draining lymph nodes following ocular HSV-1 (McKrae) challenge, then mock- or HSV-1(F)-vaccination. These results indicate that VC2 vaccination produces a protective immune response at the site of challenge to protect against HSV-1-induced ocular pathogenesis.
SUBMITTER: Naidu SK
PROVIDER: S-EPMC7004361 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA