A mathematical model for dynamics of soluble form of DNAM-1 as a biomarker for graft-versus-host disease.
Ontology highlight
ABSTRACT: DNAM-1 (CD226) is an activating immunoreceptor expressed on T cells and NK cells and involved in the pathogenesis of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We previously reported that a soluble form of DNAM-1 (sDNAM-1) is generated by shedding from activated T cells. Moreover, higher serum levels of sDNAM-1 in patients before allo-HSCT is a predictive biomarker for the development of aGVHD based on the retrospective univariate and multivariate analyses in allo-HSCT patients. However, it remains unclear how the serum levels of sDNAM-1 are regulated after allo-HSCT and whether they are associated with the development of aGVHD. Here, we constructed a mathematical model to assess the dynamics of sDNAM-1 after allo-HSCT by assuming that there are three types of sDNAM-1 (the first and the second were from alloreactive and non-alloreactive donor lymphocytes, respectively, and the third from recipient lymphocytes). Our mathematical model fitted well to the data set of sDNAM-1 in patients (n = 67) who had undergone allo-HSCT and suggest that the high proportion of the first type of sDNAM-1 to the total of the first and second types is associated with high risk of the development of severe aGVHD. Thus, sDNAM-1 after allo-HSCT can be a biomarker for the development of aGVHD.
SUBMITTER: Goshima Y
PROVIDER: S-EPMC7010286 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature
ACCESS DATA