Unknown

Dataset Information

0

DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals.


ABSTRACT: The DEPTOR-mTORC1/2 axis has been shown to play an important, but a context dependent role in the regulation of proliferation and the survival of various cancer cells in cell culture settings. The in vivo role of DEPTOR in tumorigenesis remains elusive. Here we showed that the levels of both DEPTOR protein and mRNA were substantially decreased in human prostate cancer tissues, which positively correlated with disease progression. DEPTOR depletion accelerated proliferation and survival, migration, and invasion in human prostate cancer cells. Mechanistically, DEPTOR depletion not only activated both mTORC1 and mTORC2 signals to promote cell proliferation and survival, but also induced an AKT-dependent epithelial-mesenchymal transition (EMT) and ?-catenin nuclear translocation to promote cell migration and invasion. Abrogation of mTOR or AKT activation rescued the biological consequences of DEPTOR depletion. Importantly, in a Deptor-KO mouse model, Deptor knockout accelerated prostate tumorigenesis triggered by Pten loss via the activation of mTOR signaling. Collectively, our study demonstrates that DEPTOR is a tumor suppressor in the prostate, and its depletion promotes tumorigenesis via the activation of mTORC1 and mTORC2 signals. Thus, DEPTOR reactivation via a variety of means would have therapeutic potential for the treatment of prostate cancer.

SUBMITTER: Chen X 

PROVIDER: S-EPMC7018663 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals.

Chen Xiaoyu X   Xiong Xiufang X   Cui Danrui D   Yang Fei F   Wei Dongping D   Li Haomin H   Shu Jianfeng J   Bi Yanli Y   Dai Xiaoqing X   Gong Longyuan L   Sun Yi Y   Zhao Yongchao Y  

Oncogene 20191104 7


The DEPTOR-mTORC1/2 axis has been shown to play an important, but a context dependent role in the regulation of proliferation and the survival of various cancer cells in cell culture settings. The in vivo role of DEPTOR in tumorigenesis remains elusive. Here we showed that the levels of both DEPTOR protein and mRNA were substantially decreased in human prostate cancer tissues, which positively correlated with disease progression. DEPTOR depletion accelerated proliferation and survival, migration  ...[more]

Similar Datasets

| S-EPMC10605754 | biostudies-literature
| S-EPMC3286999 | biostudies-literature
2023-11-21 | PXD044220 | Pride
| S-EPMC5465582 | biostudies-literature
| S-EPMC4853907 | biostudies-literature
| S-EPMC4359254 | biostudies-literature
| S-EPMC4636224 | biostudies-literature
| S-EPMC9927933 | biostudies-literature
| S-EPMC4043245 | biostudies-literature
| S-EPMC4427522 | biostudies-literature