Unknown

Dataset Information

0

A hybrid blue perovskite@metal-organic gel (MOG) nanocomposite: simultaneous improvement of luminescence and stability.


ABSTRACT: Blue light-emitting hybrid perovskite nanocrystals (NCs) are promising candidates for optoelectronic applications. However, these NCs suffer severely from low photoluminescence quantum yield (PLQY) and inferior stability under working conditions. Herein, we report, for the first time, a simultaneous dramatic improvement in both the luminescence and the stability of hybrid perovskite NCs through embedding in a porous metal-organic gel (MOG) matrix. The nanocomposite (EAPbBr3@MOG, EA: ethylammonium) shows sharp emission in the intense blue region (? max < 440 nm), with a substantial ten-fold enhancement in the PLQY (?53%) compared with EAPbBr3 NCs (PLQY ?5%). Incorporation of perovskite NCs into the soft MOG matrix provides the additional benefits of flexibility as well as water stability. As a proof of principle, these nanocomposites were further utilized to fabricate a white light-emitting diode. The combination of high brightness, stability and flexibility of these nanocomposites could render them viable contenders in the development of efficient, blue light-emitting diodes for practical applications.

SUBMITTER: Mollick S 

PROVIDER: S-EPMC7020792 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

A hybrid blue perovskite@metal-organic gel (MOG) nanocomposite: simultaneous improvement of luminescence and stability.

Mollick Samraj S   Mandal Tarak Nath TN   Jana Atanu A   Fajal Sahel S   Ghosh Sujit K SK  

Chemical science 20190925 45


Blue light-emitting hybrid perovskite nanocrystals (NCs) are promising candidates for optoelectronic applications. However, these NCs suffer severely from low photoluminescence quantum yield (PLQY) and inferior stability under working conditions. Herein, we report, for the first time, a simultaneous dramatic improvement in both the luminescence and the stability of hybrid perovskite NCs through embedding in a porous metal-organic gel (MOG) matrix. The nanocomposite (EAPbBr<sub>3</sub>@MOG, EA: e  ...[more]

Similar Datasets

| S-EPMC5423391 | biostudies-literature
| S-EPMC8097370 | biostudies-literature
| S-EPMC8707592 | biostudies-literature
| S-EPMC7315817 | biostudies-literature
| S-EPMC5357127 | biostudies-literature
| S-EPMC7023354 | biostudies-literature
| S-EPMC6814396 | biostudies-literature
| S-EPMC5429663 | biostudies-literature
| S-EPMC4421841 | biostudies-other
| S-EPMC4458867 | biostudies-literature