Unknown

Dataset Information

0

Tissue- and Population-Level Microbiome Analysis of the Wasp Spider Argiope bruennichi Identified a Novel Dominant Bacterial Symbiont.


ABSTRACT: Many ecological and evolutionary processes in animals depend upon microbial symbioses. In spiders, the role of the microbiome in these processes remains mostly unknown. We compared the microbiome between populations, individuals, and tissue types of a range-expanding spider, using 16S rRNA gene sequencing. Our study is one of the first to go beyond targeting known endosymbionts in spiders and characterizes the total microbiome across different body compartments (leg, prosoma, hemolymph, book lungs, ovaries, silk glands, midgut, and fecal pellets). Overall, the microbiome differed significantly between populations and individuals, but not between tissue types. The microbiome of the wasp spider Argiope bruennichi features a novel dominant bacterial symbiont, which is abundant in every tissue type in spiders from geographically distinct populations and that is also present in offspring. The novel symbiont is affiliated with the Tenericutes, but has low sequence identity (<85%) to all previously named taxa, suggesting that the novel symbiont represents a new bacterial clade. Its presence in offspring implies that it is vertically transmitted. Our results shed light on the processes that shape microbiome differentiation in this species and raise several questions about the implications of the novel dominant bacterial symbiont on the biology and evolution of its host.

SUBMITTER: Sheffer MM 

PROVIDER: S-EPMC7023434 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tissue- and Population-Level Microbiome Analysis of the Wasp Spider <i>Argiope bruennichi</i> Identified a Novel Dominant Bacterial Symbiont.

Sheffer Monica M MM   Uhl Gabriele G   Prost Stefan S   Lueders Tillmann T   Urich Tim T   Bengtsson Mia M MM  

Microorganisms 20191219 1


Many ecological and evolutionary processes in animals depend upon microbial symbioses. In spiders, the role of the microbiome in these processes remains mostly unknown. We compared the microbiome between populations, individuals, and tissue types of a range-expanding spider, using 16S rRNA gene sequencing. Our study is one of the first to go beyond targeting known endosymbionts in spiders and characterizes the total microbiome across different body compartments (leg, prosoma, hemolymph, book lun  ...[more]

Similar Datasets

| S-EPMC2602679 | biostudies-literature
| S-EPMC10904950 | biostudies-literature
| S-EPMC7788392 | biostudies-literature
| S-EPMC8070055 | biostudies-literature
| S-EPMC3272030 | biostudies-literature
| S-EPMC6086085 | biostudies-literature
| S-EPMC8767209 | biostudies-literature
| PRJNA881418 | ENA
| PRJEB6920 | ENA
| S-EPMC1691482 | biostudies-other