The Ca2+ permeation mechanism of the ryanodine receptor revealed by a multi-site ion model.
Ontology highlight
ABSTRACT: Ryanodine receptors (RyR) are ion channels responsible for the release of Ca2+ from the sarco/endoplasmic reticulum and play a crucial role in the precise control of Ca2+ concentration in the cytosol. The detailed permeation mechanism of Ca2+ through RyR is still elusive. By using molecular dynamics simulations with a specially designed Ca2+ model, we show that multiple Ca2+ ions accumulate in the upper selectivity filter of RyR1, but only one Ca2+ can occupy and translocate in the narrow pore at a time, assisted by electrostatic repulsion from the Ca2+ within the upper selectivity filter. The Ca2+ is nearly fully hydrated with the first solvation shell intact during the whole permeation process. These results suggest a remote knock-on permeation mechanism and one-at-a-time occupation pattern for the hydrated Ca2+ within the narrow pore, uncovering the basis underlying the high permeability and low selectivity of the RyR channels.
SUBMITTER: Zhang A
PROVIDER: S-EPMC7026163 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA