Unknown

Dataset Information

0

Transcriptional insights into the CD8+ T cell response in mono-HIV and HCV infection.


ABSTRACT: BACKGROUND:Disease progression in the absence of therapy varies significantly in mono-HIV and HCV infected individuals. Virus-specific CD8+ T cells play an important role in restricting lentiviral replication and determining the rate of disease progression during HIV and HCV mono- and co-infection. Thus, understanding the similarities in the characteristics of CD8+ T cells in mono-HIV and HCV infection at the transcriptomic level contributes to the development of antiviral therapy. In this study, a meta-analysis of CD8+ T cell gene expression profiles derived from mono-HIV and HCV infected individuals at different stages of disease progression, was conducted to understand the common changes experienced by CD8+ T cells. METHODS:Five microarray datasets, reporting CD8+ T cell mRNA expression of the mono-HIV and HCV infected patients, were retrieved from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified via integrative meta-analysis of expression data (INMEX) program. Network analysis methods were used to assess protein-protein interaction (PPI) networks, Gene Ontology (GO) terms and pathway enrichment for DEGs. MirDIP and miRDB online prediction tools were used to predict potential microRNAs (miRNAs) targeting hub genes. RESULTS:First, we identified 625 and 154 DEGs in the CD8+ T cells originating from mono-HIV and HCV chronic progressor patients, respectively, compared to healthy individuals. Among them, interferon-stimulated genes (ISGs) including ISG15, IFIT3, ILI44L, CXCL8, FPR1 and TLR2, were upregulated after mono-HIV and HCV infection. Pathway enrichment analysis of DEGs showed that the "cytokine-cytokine receptor interaction" and "NF-kappa B" signaling pathways were upregulated after mono-HIV and HCV infection. In addition, we identified 92 and 50 DEGs in the CD8+ T cells of HIV non-progressor and HCV resolver patients, respectively, compared with corresponding chronic progressors. We observed attenuated mitosis and reduced ISG expression in HIV non-progressors and HCV resolvers compared with the corresponding chronic progressors. Finally, we identified miRNA-143-3p, predicted to target both IFIT3 in HIV and STAT5A in HCV infection. CONCLUSIONS:We identified DEGs and transcriptional patterns in mono-HIV and HCV infected individuals at different stages of disease progression and identified miRNA-143-3p with potential to intervene disease progression, which provides a new strategy for developing targeted therapies.

SUBMITTER: Li SY 

PROVIDER: S-EPMC7038596 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Transcriptional insights into the CD8<sup>+</sup> T cell response in mono-HIV and HCV infection.

Li Si-Yao SY   Zhang Zi-Ning ZN   Jiang Yong-Jun YJ   Fu Ya-Jing YJ   Shang Hong H  

Journal of translational medicine 20200224 1


<h4>Background</h4>Disease progression in the absence of therapy varies significantly in mono-HIV and HCV infected individuals. Virus-specific CD8<sup>+</sup> T cells play an important role in restricting lentiviral replication and determining the rate of disease progression during HIV and HCV mono- and co-infection. Thus, understanding the similarities in the characteristics of CD8<sup>+</sup> T cells in mono-HIV and HCV infection at the transcriptomic level contributes to the development of an  ...[more]

Similar Datasets

| S-EPMC3689652 | biostudies-literature
| S-EPMC3441577 | biostudies-literature
| S-EPMC5990921 | biostudies-literature
2018-04-09 | PXD009007 | Pride
| S-EPMC4042011 | biostudies-literature
| S-EPMC9329743 | biostudies-literature
| S-EPMC7773414 | biostudies-literature
| S-EPMC3617231 | biostudies-literature
| S-EPMC3692005 | biostudies-literature
| S-EPMC5381812 | biostudies-literature