Data on the effect of CdS on the lateral collection length of charge carriers for Cu(In,Ga)Se2 solar cells with mesh transparent conducting electrodes.
Ontology highlight
ABSTRACT: Mesh transparent conducting electrodes (TCEs) have been successfully employed to Cu(In,Ga)Se2 (CIGS) solar cells (Lee et al., 2018; Jang et al., 2017; Lee et al., 2020) [1-3]. Lateral motion of charge carriers is necessarily required for the carriers to be collected in CIGS solar cell cells having mesh TCEs. Lateral collection length of carriers can be obtain based on the lateral photocurrent values measured in custom designed CIGS test structures, which in turn enables to determine an optimum design of mesh TCEs for these CIGS solar cells (Lee et al., 2019) [4]. In a standard CIGS solar cell, a CdS layer is required to be fully cover the CIGS whole surface. However, it is not the case for mesh TCE based CIGS solar cells (Chung, 2019) [5]. The presence or absence of the CdS layer on the CIGS/Mo planar stack alters the traveling path of the charge carriers, which in turn will affect the lateral photocurrent values. Therefore, it will be helpful to know the effect of the presence or absence of the CdS layer on the lateral photocurrents in mesh TCE based CIGS solar cells.
SUBMITTER: Lee S
PROVIDER: S-EPMC7063106 | biostudies-literature | 2020 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA