Synechocystis sp. PCC 6803 overexpressing genes involved in CBB cycle and free fatty acid cycling enhances the significant levels of intracellular lipids and secreted free fatty acids.
Ontology highlight
ABSTRACT: The integrative aspect on carbon fixation and lipid production is firstly implemented in cyanobacterium Synechocystis sp. PCC 6803 using metabolic engineering approach. Genes related to Calvin-Benson-Bassham (CBB) cycle including rbcLXS and glpD and free fatty acid recycling including aas encoding acyl-ACP synthetase were practically manipulated in single, double and triple overexpressions via single homologous recombination. The significantly increased growth rate and intracellular pigment contents were evident in glpD-overexpressing (OG) strain among all strains studied under normal growth condition. The triple aas_glpD_rbcLXS-overexpressing (OAGR) strain notably gave the highest contents of both intracellular lipids and extracellular free fatty acids (FFAs) of about 35.9 and 9.6% w/DCW, respectively, when compared to other strains at day 5 of cultivation. However, the highest intracellular lipid titer and production rate were observed in OA strain at day 5 (228.7?mg/L and 45.7?mg/L/day, respectively) and OG strain at day 10 (358.3?mg/L and 35.8?mg/L/day, respectively) due to their higher growth. For fatty acid (FA) compositions, the main saturated fatty acid of palmitic acid (C16:0) was dominantly found in both intracellular lipid and secreted FFAs fractions. Notably, intracellular FA proportion of myristic acid (C14:0) was induced in all engineered strains whereas the increase of stearic acid (C18:0) composition was found in extracellular FFAs fraction. Altogether, these overexpressing strains efficiently produced higher lipid production via homeostasis balance on both its lipid synthesis and FFAs secretion.
SUBMITTER: Eungrasamee K
PROVIDER: S-EPMC7066134 | biostudies-literature | 2020 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA