Unknown

Dataset Information

0

Robust microorganisms for biofuel and chemical production from municipal solid waste.


ABSTRACT: BACKGROUND:Worldwide 3.4 billion tonnes of municipal solid waste (MSW) will be produced annually by 2050, however, current approaches to MSW management predominantly involve unsustainable practices like landfilling and incineration. The organic fraction of MSW (OMSW) typically comprises?~?50% lignocellulose-rich material but is underexplored as a biomanufacturing feedstock due to its highly inconsistent and heterogeneous composition. This study sought to overcome the limitations associated with studying MSW-derived feedstocks by using OMSW produced from a realistic and reproducible MSW mixture on a commercial autoclave system. The resulting OMSW fibre was enzymatically hydrolysed and used to screen diverse microorganisms of biotechnological interest to identify robust species capable of fermenting this complex feedstock. RESULTS:The autoclave pre-treated OMSW fibre contained a polysaccharide fraction comprising 38% cellulose and 4% hemicellulose. Enzymatic hydrolysate of OMSW fibre was high in D-glucose (5.5% w/v) and D-xylose (1.8%w/v) but deficient in nitrogen and phosphate. Although relatively low levels of levulinic acid (30 mM) and vanillin (2 mM) were detected and furfural and 5-hydroxymethylfurfural were absent, the hydrolysate contained an abundance of potentially toxic metals (0.6% w/v). Hydrolysate supplemented with 1% yeast extract to alleviate nutrient limitation was used in a substrate-oriented shake-flask screen with eight biotechnologically useful microorganisms (Clostridium saccharoperbutylacetonicum, Escherichia coli, Geobacillus thermoglucosidasius, Pseudomonas putida, Rhodococcus opacus, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Zymomonas mobilis). Each species' growth and productivity were characterised and three species were identified that robustly and efficiently fermented OMSW fibre hydrolysate without significant substrate inhibition: Z. mobilis, S. cerevisiae and R. opacus, respectively produced product to 69%, 70% and 72% of the maximum theoretical fermentation yield and could theoretically produce 136 kg and 139 kg of ethanol and 91 kg of triacylglycerol (TAG) per tonne of OMSW. CONCLUSIONS:Developing an integrated biorefinery around MSW has the potential to significantly alleviate the environmental burden of current waste management practices. Substrate-oriented screening of a representative and reproducible OMSW-derived fibre identified microorganisms intrinsically suited to growth on OMSW hydrolysates. These species are promising candidates for developing an MSW biorefining platform and provide a foundation for future studies aiming to valorise this underexplored feedstock.

SUBMITTER: Dornau A 

PROVIDER: S-EPMC7077162 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Robust microorganisms for biofuel and chemical production from municipal solid waste.

Dornau Aritha A   Robson James F JF   Thomas Gavin H GH   McQueen-Mason Simon J SJ  

Microbial cell factories 20200316 1


<h4>Background</h4>Worldwide 3.4 billion tonnes of municipal solid waste (MSW) will be produced annually by 2050, however, current approaches to MSW management predominantly involve unsustainable practices like landfilling and incineration. The organic fraction of MSW (OMSW) typically comprises ~ 50% lignocellulose-rich material but is underexplored as a biomanufacturing feedstock due to its highly inconsistent and heterogeneous composition. This study sought to overcome the limitations associat  ...[more]

Similar Datasets

| S-EPMC9636838 | biostudies-literature
| PRJNA991727 | ENA
| S-EPMC4837139 | biostudies-literature
| S-EPMC6355964 | biostudies-literature
| S-EPMC7440930 | biostudies-literature
| S-EPMC5156799 | biostudies-literature
| S-EPMC7508382 | biostudies-literature
| S-EPMC6923264 | biostudies-literature
| S-EPMC8440058 | biostudies-literature
| S-EPMC8072713 | biostudies-literature