Unknown

Dataset Information

0

IpdE1-IpdE2 Is a Heterotetrameric Acyl Coenzyme A Dehydrogenase That Is Widely Distributed in Steroid-Degrading Bacteria.


ABSTRACT: Steroid-degrading bacteria, including Mycobacterium tuberculosis (Mtb), utilize an architecturally distinct subfamily of acyl coenzyme A dehydrogenases (ACADs) for steroid catabolism. These ACADs are ?2?2 heterotetramers that are usually encoded by adjacent fadE-like genes. In mycobacteria, ipdE1 and ipdE2 (formerly fadE30 and fadE33) occur in divergently transcribed operons associated with the catabolism of 3a?-H-4?(3'-propanoate)-7a?-methylhexahydro-1,5-indanedione (HIP), a steroid metabolite. In Mycobacterium smegmatis, ?ipdE1 and ?ipdE2 mutants had similar phenotypes, showing impaired growth on cholesterol and accumulating 5-OH HIP in the culture supernatant. Bioinformatic analyses revealed that IpdE1 and IpdE2 share many of the features of the ?- and ?-subunits, respectively, of heterotetrameric ACADs that are encoded by adjacent genes in many steroid-degrading proteobacteria. When coproduced in a rhodococcal strain, IpdE1 and IpdE2 of Mtb formed a complex that catalyzed the dehydrogenation of 5OH-HIP coenzyme A (5OH-HIP-CoA) to 5OH-3a?-H-4?(3'-prop-1-enoate)-7a?-methylhexa-hydro-1,5-indanedione coenzyme A ((E)-5OH-HIPE-CoA). This corresponds to the initial step in the pathway that leads to degradation of steroid C and D rings via ?-oxidation. Small-angle X-ray scattering revealed that the IpdE1-IpdE2 complex was an ?2?2 heterotetramer typical of other ACADs involved in steroid catabolism. These results provide insight into an important class of steroid catabolic enzymes and a potential virulence determinant in Mtb.

SUBMITTER: Gadbery JE 

PROVIDER: S-EPMC7081610 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

IpdE1-IpdE2 Is a Heterotetrameric Acyl Coenzyme A Dehydrogenase That Is Widely Distributed in Steroid-Degrading Bacteria.

Gadbery John E JE   Round James W JW   Yuan Tianao T   Wipperman Matthew F MF   Story Keith T KT   Crowe Adam M AM   Casabon Israel I   Liu Jie J   Yang Xinxin X   Eltis Lindsay D LD   Sampson Nicole S NS  

Biochemistry 20200304 10


Steroid-degrading bacteria, including <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>), utilize an architecturally distinct subfamily of acyl coenzyme A dehydrogenases (ACADs) for steroid catabolism. These ACADs are α<sub>2</sub>β<sub>2</sub> heterotetramers that are usually encoded by adjacent <i>fadE-</i>like genes. In mycobacteria, <i>ipdE1</i> and <i>ipdE2</i> (formerly <i>fadE30</i> and <i>fadE33</i>) occur in divergently transcribed operons associated with the catabolism of 3aα-<i>H</i>-4α(3  ...[more]

Similar Datasets

| S-EPMC4311827 | biostudies-literature
| S-EPMC3807453 | biostudies-literature
| S-EPMC3911158 | biostudies-literature
| S-EPMC4372733 | biostudies-literature
| S-EPMC6952236 | biostudies-literature
| S-EPMC4222585 | biostudies-literature
| S-EPMC3911169 | biostudies-literature
| S-EPMC3981269 | biostudies-literature
| S-EPMC1178195 | biostudies-other
| S-EPMC6957491 | biostudies-literature