Steryl Ester Formation and Accumulation in Steroid-Degrading Bacteria.
Ontology highlight
ABSTRACT: Steryl esters (SEs) are important storage compounds in many eukaryotes and are often prominent components of intracellular lipid droplets. Here, we demonstrate that selected Actino- and Proteobacteria growing on sterols are also able to synthesize SEs and to sequester them in cytoplasmic lipid droplets. We found cholesteryl ester (CE) formation in members of the actinobacterial genera Rhodococcus, Mycobacterium, and Amycolatopsis, as well as several members of the proteobacterial Cellvibrionales order. CEs maximally accumulated under nitrogen-limiting conditions, suggesting that steryl ester formation plays a crucial role for storing excess energy and carbon under adverse conditions. Rhodococcus jostii RHA1 was able to synthesize phytosteryl and cholesteryl esters, the latter reaching up to 7% of its cellular dry weight and 69% of its lipid droplets. Purified lipid droplets from RHA1 contained CEs, free cholesterol, and triacylglycerols. In addition, we found formation of CEs in Mycobacterium tuberculosis when it was grown with cholesterol plus an additional fatty acid substrate. This study provides a basis for the application of bacterial whole-cell systems in the biotechnological production of SEs for use in functional foods and cosmetics.IMPORTANCE Oleaginous bacteria exhibit great potential for the production of high-value neutral lipids, such as triacylglycerols and wax esters. This study describes the formation of steryl esters (SEs) as neutral lipid storage compounds in sterol-degrading oleaginous bacteria, providing a basis for biotechnological production of SEs using bacterial systems with potential applications in the functional food, nutraceutical, and cosmetic industries. We found cholesteryl ester (CE) formation in several sterol-degrading Actino- and Proteobacteria under nitrogen-limiting conditions, suggesting an important role of this process in storing energy and carbon under adverse conditions. In addition, Mycobacterium tuberculosis grown on cholesterol accumulated CEs in the presence of an additional fatty acid substrate.
SUBMITTER: Holert J
PROVIDER: S-EPMC6952236 | biostudies-literature | 2020 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA