Project description:COVID-19 has become a major global public health burden, currently causing a rapidly growing number of infections and significant morbidity and mortality around the world. Early detection with fast and sensitive assays and timely intervention are crucial for interrupting the spread of the COVID-19 virus (SARS-CoV-2). Using a mismatch-tolerant amplification technique, we developed a simple, rapid, sensitive and visual reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for SARS-CoV-2 detection based on its N gene. The assay has a high specificity and sensitivity, and robust reproducibility, and its results can be monitored using a real-time PCR machine or visualized via colorimetric change from red to yellow. The limit of detection (LOD) of the assay is 118.6 copies of SARS-CoV-2 RNA per 25 ?L reaction. The reaction can be completed within 30 min for real-time fluorescence monitoring, or 40 min for visual detection when the template input is more than 200 copies per 25 ?L reaction. To evaluate the viability of the assay, a comparison between the RT-LAMP and a commercial RT-qPCR assay was made using 56 clinical samples. The SARS-CoV-2 RT-LAMP assay showed perfect agreement in detection with the RT-qPCR assay. The newly-developed SARS-CoV-2 RT-LAMP assay is a simple and rapid method for COVID-19 surveillance.
Project description:Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been spreading rapidly all over the world. In the absence of effective treatments or a vaccine, there is an urgent need to develop a more rapid and simple detection technology of COVID-19. We describe a WarmStart colorimetric reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of SARS-CoV-2. The detection limit for this assay was 1 copy/µL SARS-CoV-2. To test the clinical sensitivity and specificity of the assay, 37 positive and 20 negative samples were used. The WarmStart colorimetric RT-LAMP had 100% sensitivity and specificity. End products were detected by direct observation, thereby eliminating the need for post-amplification processing steps. WarmStart colorimetric RT-LAMP provides an opportunity to facilitate virus detection in resource-limited settings without a sophisticated diagnostic infrastructure.
Project description:BackgroundHighly sensitive real-time reverse transcription polymerase chain reaction (RT-qPCR) methods have been developed for the detection of SARS-CoV-2. However, they are costly. Loop-mediated isothermal amplification (LAMP) assay has emerged as a novel alternative isothermal amplification method for the detection of nucleic acid.MethodsA rapid, sensitive and specific real-time reverse transcription LAMP (RT-LAMP) assay was developed for SARS-CoV-2 detection.ResultsThis assay detected one copy/reaction of SARS-CoV-2 RNA in 30 min. Both the clinical sensitivity and specificity of this assay were 100%. The RT-LAMP showed comparable performance with RT-qPCR. Combining simplicity and cost-effectiveness, this assay is therefore recommended for use in resource resource-limited settings.
Project description:The main strategy for response and control of COVID-19 demands the use of rapid, accurate diagnostic tests aimed at the first point of health care. During the emergency, an increase in asymptomatic and symptomatic cases results in a great demand for molecular tests, which is promoting the development and application of rapid diagnostic technologies. In this study, we describe the development and evaluation of RT-LAMP to detect SARS-CoV-2 based on three genes (ORF1ab, M and N genes) in monoplex and triplex format. RT-LAMP assays were compared with the gold standard method RT-qPCR. The triplex format (RdRp, M and N genes) allowed obtaining comparable results with de RT-qPCR (RdRp and E genes), presented a sensitivity of 98.9% and a specificity of 97.9%, opening the opportunity to apply this method to detect SARS-CoV-2 at primary health-care centers.
Project description:The previous outbreaks of SARS-CoV and MERS-CoV have led researchers to study the role of diagnostics in impediment of further spread and transmission. With the recent emergence of the novel SARS-CoV-2, the availability of rapid, sensitive, and reliable diagnostic methods is essential for disease control. Hence, we have developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the specific detection of SARS-CoV-2. The primer sets for RT-LAMP assay were designed to target the nucleocapsid gene of the viral RNA, and displayed a detection limit of 102 RNA copies close to that of qRT-PCR. Notably, the assay has exhibited a rapid detection span of 30 min combined with the colorimetric visualization. This test can detect specifically viral RNAs of the SARS-CoV-2 with no cross-reactivity to related coronaviruses, such as HCoV-229E, HCoV-NL63, HCoV-OC43, and MERS-CoV as well as human infectious influenza viruses (type B, H1N1pdm, H3N2, H5N1, H5N6, H5N8, and H7N9), and other respiratory disease-causing viruses (RSVA, RSVB, ADV, PIV, MPV, and HRV). Furthermore, the developed RT-LAMP assay has been evaluated using specimens collected from COVID-19 patients that exhibited high agreement to the qRT-PCR. Our RT-LAMP assay is simple to perform, less expensive, time-efficient, and can be used in clinical laboratories for preliminary detection of SARS-CoV-2 in suspected patients. In addition to the high sensitivity and specificity, this isothermal amplification conjugated with a single-tube colorimetric detection method may contribute to the public health responses and disease control, especially in the areas with limited laboratory capacities.
Project description:BackgroundFast, reliable and easy to handle methods are required to facilitate urgently needed point-of-care testing (POCT) in the current coronavirus pandemic. Life-threatening severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread all over the world, infecting more than 33,500,000 people and killing over 1 million of them as of October 2020. Infected individuals without any symptoms might still transfer the virus to others underlining the extraordinary transmissibility of this new coronavirus. In order to identify early infections effectively, treat patients on time and control disease spreading, rapid, accurate and onsite testing methods are urgently required.ResultsHere we report the development of a loop-mediated isothermal amplification (LAMP) based method to detect SARS-CoV-2 genes ORF8 and N directly from pharyngeal swab samples. The established reverse transcription LAMP (RT-LAMP) assay detects SARS-CoV-2 directly from pharyngeal swab samples without previous time-consuming and laborious RNA extraction. The assay is sensitive and highly specific for SARS-CoV-2 detection, showing no cross reactivity when tested on 20 other respiratory pathogens. The assay is 12 times faster and 10 times cheaper than routine reverse transcription real-time polymerase chain reaction, depending on the assay used.ConclusionThe fast and easy to handle RT-LAMP assay amplifying specifically the genomic regions ORF8 and N of SARS-CoV-2 is ideally suited for POCT at e.g. railway stations, airports or hospitals. Given the current pandemic situation, rapid, cost efficient and onsite methods like the here presented RT-LAMP assay are urgently needed to contain the viral spread.
Project description:A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed and optimized to detect bovine viral diarrhea viral (BVDV) RNA. The RT-LAMP assay is highly sensitive and able to detect 4.67×10(0)copies of BVDV RNA. Additionally, the RT-LAMP method is capable of detecting both genotypes of BVDV. No cross-reaction with other bovine viruses was observed. The ability of RT-LAMP to detect BVDV RNA from bovine fecal swabs was also evaluated. Of the 88 fecal swabs, 38 were found to be positive by RT-LAMP assay, whereas 39 were positive by real-time RT-PCR. Taken together, the BVDV specific RT-LAMP method is highly specific and sensitive and can be used as a rapid and direct diagnostic assay for testing clinical samples.
Project description:ObjectiveTo evaluate a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and compare it with RT-PCR.MethodsWe designed primers specific to the orf1ab and S genes of SARS-CoV-2. Total viral RNA was extracted using the QIAamp Viral RNA Mini Kit. We optimized the RT-LAMP assay, and evaluated it for its sensitivity and specificity of detection using real-time turbidity monitoring and visual observation.ResultsThe primer sets orf1ab-4 and S-123 amplified the genes in the shortest times, the mean (±SD) times were 18 ± 1.32 min and 20 ± 1.80 min, respectively, and 63°C was the optimum reaction temperature. The sensitivities were 2 × 101 copies and 2 × 102 copies per reaction with primer sets orf1ab-4 and S-123, respectively. This assay showed no cross-reactivity with 60 other respiratory pathogens. To describe the availability of this method in clinical diagnosis, we collected 130 specimens from patients with clinically suspected SARS-CoV-2 infection. Among them, 58 were confirmed to be positive and 72 were negative by RT-LAMP. The sensitivity was 100% (95% CI 92.3%-100%), specificity 100% (95% CI 93.7%-100%). This assay detected SARS-CoV-2 in a mean (±SD) time of 26.28 ± 4.48 min and the results can be identified with visual observation.ConclusionThese results demonstrate that we developed a rapid, simple, specific and sensitive RT-LAMP assay for SARS-CoV-2 detection among clinical samples. It will be a powerful tool for SARS-CoV-2 identification, and for monitoring suspected patients, close contacts and high-risk groups.
Project description:The outbreak and pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed into a public health emergency of international concern. The rapid and accurate detection of the virus is a critical means to prevent and control the disease. Herein, we provide a novel, rapid, and simple approach, named dual reverse transcriptional colorimetric loop-mediated isothermal amplification (dRT-cLAMP) assay, to accelerate the detection of the SARS-CoV-2 virus without using expensive equipment. The result of this assay is shown by color change and is easily detected by the naked eye. To improve the detection accuracy, we included two primer sets that specifically target the viral orf1ab and N genes in the same reaction mixture. Our assay can detect the synthesized SARS-CoV-2 N and orf1ab genes at a low level of 100 copies/μL. Sequence alignment analysis of the two synthesized genes and those of 9968 published SARS-CoV-2 genomes and 17 genomes of other pathogens from the same infection site or similar symptoms as COVID-19 revealed that the primers for the dRT-cLAMP assay are highly specific. Our assay of 27 clinical samples of SARS-CoV-2 virus and 27 standard-added environmental simulation samples demonstrated that compared to the commercial kits, the consistency of the positive, negative, and probable clinical samples was 100, 92.31, and 44.44%, respectively. Moreover, our results showed that the positive, but not negative, standard-added samples displayed a naked-eye-detectable color change. Together, our results demonstrate that the dRT-cLAMP assay is a feasible detection assay for SARS-CoV-2 virus and is of great significance since rapid onsite detection of the virus is urgently needed at the ports of entry, health care centers, and for internationally traded goods.
Project description:In this study, a simple one-step reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for rapid detection of Lassa virus (LASV) was established. The two primer sets were designed to detect LASV circulating in Sierra Leone and northeastern Nigeria. The RT-LAMP assay using these primer sets was able to detect 100 copies of the in vitro transcribed artificial LASV RNA within 25 min. The assay was also evaluated using intact viral RNA extracted from cell culture-propagated viruses and confirmed to be highly specific for LASV. The RT-LAMP assay developed in this study is rapid, simple, and highly specific for the detection of LASV, although its sensitivity is slightly lower than that of real-time RT-PCR. In addition, because the RT-LAMP assay does not require the use of sophisticated equipment, it would be advantageous for clinical diagnosis of LASV infection in developing countries. It might also be employed in cases of deliberate release during bioterrorism attacks or in epidemiological surveillance for disease outbreaks.