Project description:During a pneumonic plague outbreak in Moramanga, Madagascar, we identified 4 confirmed, 1 presumptive, and 9 suspected plague case-patients. Human-to-human transmission among close contacts was high (reproductive number 1.44) and the case fatality rate was 71%. Phylogenetic analysis showed that the Yersinia pestis isolates belonged to group q3, different from the previous outbreak.
Project description:Madagascar is more seriously affected by plague, a zoonosis caused by Yersinia pestis, than any other country. The Plague National Control Program was established in 1993 and includes human surveillance. During 1998-2016, a total of 13,234 suspected cases were recorded, mainly from the central highlands; 27% were confirmed cases, and 17% were presumptive cases. Patients with bubonic plague (median age 13 years) represented 93% of confirmed and presumptive cases, and patients with pneumonic plague (median age 29 years) represented 7%. Deaths were associated with delay of consultation, pneumonic form, contact with other cases, occurrence after 2009, and not reporting dead rats. A seasonal pattern was observed with recrudescence during September-March. Annual cases peaked in 2004 and decreased to the lowest incidence in 2016. This overall reduction occurred primarily for suspected cases and might be caused by improved adherence to case criteria during widespread implementation of the F1 rapid diagnostic test in 2002.
Project description:UNLABELLED:A cluster of human plague cases occurred in the seaport city of Mahajanga, Madagascar, from 1991 to 1999 following 62 years with no evidence of plague, which offered insights into plague pathogen dynamics in an urban environment. We analyzed a set of 44 Mahajanga isolates from this 9-year outbreak, as well as an additional 218 Malagasy isolates from the highland foci. We sequenced the genomes of four Mahajanga strains, performed whole-genome sequence single-nucleotide polymorphism (SNP) discovery on those strains, screened the discovered SNPs, and performed a high-resolution 43-locus multilocus variable-number tandem-repeat analysis of the isolate panel. Twenty-two new SNPs were identified and defined a new phylogenetic lineage among the Malagasy isolates. Phylogeographic analysis suggests that the Mahajanga lineage likely originated in the Ambositra district in the highlands, spread throughout the northern central highlands, and was then introduced into and became transiently established in Mahajanga. Although multiple transfers between the central highlands and Mahajanga occurred, there was a locally differentiating and dominant subpopulation that was primarily responsible for the 1991-to-1999 Mahajanga outbreaks. Phylotemporal analysis of this Mahajanga subpopulation revealed a cycling pattern of diversity generation and loss that occurred during and after each outbreak. This pattern is consistent with severe interseasonal genetic bottlenecks along with large seasonal population expansions. The ultimate extinction of plague pathogens in Mahajanga suggests that, in this environment, the plague pathogen niche is tenuous at best. However, the temporary large pathogen population expansion provides the means for plague pathogens to disperse and become ecologically established in more suitable nonurban environments. IMPORTANCE:Maritime spread of plague led to the global dissemination of this disease and affected the course of human history. Multiple historical plague waves resulted in massive human mortalities in three classical plague pandemics: Justinian (6th and 7th centuries), Middle Ages (14th to 17th centuries), and third (mid-1800s to the present). Key to these events was the pathogen's entry into new lands by "plague ships" via seaport cities. Although initial disease outbreaks in ports were common, they were almost never sustained for long and plague pathogens survived only if they could become established in ecologically suitable habitats. Although plague pathogens' ability to invade port cities has been essential for intercontinental spread, these regions have not proven to be a suitable long-term niche. The disease dynamics in port cities such as Mahajanga are thus critical to plague pathogen amplification and dispersal into new suitable ecological niches for the observed global long-term maintenance of plague pathogens.
Project description:BackgroundPlague is a highly infectious zoonotic disease caused by the bacillus Yersinia pestis. Three major forms of the disease are known: bubonic, septicemic, and pneumonic plague. Though highly related to the past, plague still represents a global public health concern. Cases of plague continue to be reported worldwide. In recent months, pneumonic plague cases have been reported in Madagascar. However, despite such a long-standing and rich history, it is rather difficult to get a comprehensive overview of the general situation. Within the framework of electronic health (eHealth), in which people increasingly search the internet looking for health-related material, new information and communication technologies could enable researchers to get a wealth of data, which could complement traditional surveillance of infectious diseases.ObjectiveIn this study, we aimed to assess public reaction regarding the recent plague outbreak in Madagascar by quantitatively characterizing the public's interest.MethodsWe captured public interest using Google Trends (GT) and correlated it to epidemiological real-world data in terms of incidence rate and spread pattern.ResultsStatistically significant positive correlations were found between GT search data and confirmed (R2=0.549), suspected (R2=0.265), and probable (R2=0.518) cases. From a geospatial standpoint, plague-related GT queries were concentrated in Toamasina (100%), Toliara (68%), and Antananarivo (65%). Concerning the forecasting models, the 1-day lag model was selected as the best regression model.ConclusionsAn earlier digital Web search reaction could potentially contribute to better management of outbreaks, for example, by designing ad hoc interventions that could contain the infection both locally and at the international level, reducing its spread.
Project description:Plague (Yersinia pestis) remains endemic in certain parts of the world. We assessed the cost-effectiveness of plague control interventions recommended by the World Health Organization with particular consideration to intervention coverage and timing. We developed a dynamic model of the spread of plague between interacting populations of humans, rats, and fleas and performed a cost-effectiveness analysis calibrated to a 2017 Madagascar outbreak. We assessed three interventions alone and in combination: expanded access to antibiotic treatment with doxycycline, mass distribution of doxycycline prophylaxis, and mass distribution of malathion. We varied intervention timing and coverage levels. We calculated costs, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios from a healthcare perspective. The preferred intervention, using a cost-effectiveness threshold of $1350/QALY (GDP per capita in Madagascar), was expanded access to antibiotic treatment with doxycycline with 100% coverage starting immediately after the first reported case, gaining 543 QALYs at an incremental cost of $1023/QALY gained. Sensitivity analyses support expanded access to antibiotic treatment and leave open the possibility that mass distribution of doxycycline prophylaxis or mass distribution of malathion could be cost-effective. Our analysis highlights the potential for rapid expansion of access to doxycycline upon recognition of plague outbreaks to cost-effectively prevent future large-scale plague outbreaks and highlights the importance of intervention timing.
Project description:BackgroundYersinia pestis is the causative agent of human plague and is endemic in various African, Asian and American countries. In Madagascar, the disease represents a significant public health problem with hundreds of human cases a year. Unfortunately, poor infrastructure makes outbreak investigations challenging.Methodology/principal findingsDNA was extracted directly from 93 clinical samples from patients with a clinical diagnosis of plague in Madagascar in 2007. The extracted DNAs were then genotyped using three molecular genotyping methods, including, single nucleotide polymorphism (SNP) typing, multi-locus variable-number tandem repeat analysis (MLVA), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) analysis. These methods provided increasing resolution, respectively. The results of these analyses revealed that, in 2007, ten molecular groups, two newly described here and eight previously identified, were responsible for causing human plague in geographically distinct areas of Madagascar.Conclusions/significancePlague in Madagascar is caused by numerous distinct types of Y. pestis. Genotyping method choice should be based upon the discriminatory power needed, expense, and available data for any desired comparisons. We conclude that genotyping should be a standard tool used in epidemiological investigations of plague outbreaks.
Project description:Pneumonic plague (PP) is characterized by high infection rate, person-to-person transmission, and rapid progression to severe disease. In 2017, a PP epidemic occurred in 2 Madagascar urban areas, Antananarivo and Toamasina. We used epidemiologic data and Yersinia pestis genomic characterization to determine the sources of this epidemic. Human plague emerged independently from environmental reservoirs in rural endemic foci >20 times during August-November 2017. Confirmed cases from 5 emergences, including 4 PP cases, were documented in urban areas. Epidemiologic and genetic analyses of cases associated with the first emergence event to reach urban areas confirmed that transmission started in August; spread to Antananarivo, Toamasina, and other locations; and persisted in Antananarivo until at least mid-November. Two other Y. pestis lineages may have caused persistent PP transmission chains in Antananarivo. Multiple Y. pestis lineages were independently introduced to urban areas from several rural foci via travel of infected persons during the epidemic.
Project description:BackgroundPlague, a zoonosis caused by Yersinia pestis, is found in Asia and the Americas, but predominantly in Africa, with the island of Madagascar reporting almost one third of human cases worldwide. Plague's occurrence is affected by local climate factors which in turn are influenced by large-scale climate phenomena such as the El Niño Southern Oscillation (ENSO). The effects of ENSO on regional climate are often enhanced or reduced by a second large-scale climate phenomenon, the Indian Ocean Dipole (IOD). It is known that ENSO and the IOD interact as drivers of disease. Yet the impacts of these phenomena in driving plague dynamics via their effect on regional climate, and specifically contributing to the foci of transmission on Madagascar, are unknown. Here we present the first analysis of the effects of ENSO and IOD on plague in Madagascar.Methodology/principal findingsWe use a forty-eight year monthly time-series of reported human plague cases from 1960 to 2008. Using wavelet analysis, we show that over the last fifty years there have been complex non-stationary associations between ENSO/IOD and the dynamics of plague in Madagascar. We demonstrate that ENSO and IOD influence temperature in Madagascar and that temperature and plague cycles are associated. The effects on plague appear to be mediated more by temperature, but precipitation also undoubtedly influences plague in Madagascar. Our results confirm a relationship between plague anomalies and an increase in the intensity of ENSO events and precipitation.Conclusions/significanceThis work widens the understanding of how climate factors acting over different temporal scales can combine to drive local disease dynamics. Given the association of increasing ENSO strength and plague anomalies in Madagascar it may in future be possible to forecast plague outbreaks in Madagascar. The study gives insight into the complex and changing relationship between climate factors and plague in Madagascar.
Project description:BackgroundMadagascar accounts for 75% of global plague cases reported to WHO, with an annual incidence of 200-700 suspected cases (mainly bubonic plague). In 2017, a pneumonic plague epidemic of unusual size occurred. The extent of this epidemic provides a unique opportunity to better understand the epidemiology of pneumonic plagues, particularly in urban settings.MethodsClinically suspected plague cases were notified to the Central Laboratory for Plague at Institut Pasteur de Madagascar (Antananarivo, Madagascar), where biological samples were tested. Based on cases recorded between Aug 1, and Nov 26, 2017, we assessed the epidemiological characteristics of this epidemic. Cases were classified as suspected, probable, or confirmed based on the results of three types of diagnostic tests (rapid diagnostic test, molecular methods, and culture) according to 2006 WHO recommendations.Findings2414 clinically suspected plague cases were reported, including 1878 (78%) pneumonic plague cases, 395 (16%) bubonic plague cases, one (<1%) septicaemic case, and 140 (6%) cases with unspecified clinical form. 386 (21%) of 1878 notified pneumonic plague cases were probable and 32 (2%) were confirmed. 73 (18%) of 395 notified bubonic plague cases were probable and 66 (17%) were confirmed. The case fatality ratio was higher among confirmed cases (eight [25%] of 32 cases) than probable (27 [8%] of 360 cases) or suspected pneumonic plague cases (74 [5%] of 1358 cases) and a similar trend was seen for bubonic plague cases (16 [24%] of 66 confirmed cases, four [6%] of 68 probable cases, and six [2%] of 243 suspected cases). 351 (84%) of 418 confirmed or probable pneumonic plague cases were concentrated in Antananarivo, the capital city, and Toamasina, the main seaport. All 50 isolated Yersinia pestis strains were susceptible to the tested antibiotics.InterpretationThis predominantly urban plague epidemic was characterised by a large number of notifications in two major urban areas and an unusually high proportion of pneumonic forms, with only 23% having one or more positive laboratory tests. Lessons about clinical and biological diagnosis, case definition, surveillance, and the logistical management of the response identified in this epidemic are crucial to improve the response to future plague outbreaks.FundingUS Agency for International Development, WHO, Institut Pasteur, US Department of Health and Human Services, Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases, Models of Infectious Disease Agent Study of the National Institute of General Medical Sciences, AXA Research Fund, and the INCEPTION programme.