Integration of Heterogeneous Experimental Data Improves Global Map of Human Protein Complexes.
Ontology highlight
ABSTRACT: Protein complexes play a significant role in the core functionality of cells. These complexes are typically identified by detecting densely connected subgraphs in protein-protein interaction (PPI) networks. Recently, multiple large-scale mass spectrometry-based experiments have significantly increased the availability of PPI data in order to further expand the set of known complexes. However, high-throughput experimental data generally are incomplete, show limited agreement between experiments, and show frequent false positive interactions. There is a need for computational approaches that can address these limitations in order to improve the coverage and accuracy of human protein complexes. Here, we present a new method that integrates data from multiple heterogeneous experiments and sources in order to increase the reliability and coverage of predicted protein complexes. We first fused the heterogeneous data into a feature matrix and trained classifiers to score pairwise protein interactions. We next used graph based methods to combine pairwise interactions into predicted protein complexes. Our approach improves the accuracy and coverage of protein pairwise interactions, accurately identifies known complexes, and suggests both novel additions to known complexes and entirely new complexes. Our results suggest that integration of heterogeneous experimental data helps improve the reliability and coverage of diverse high-throughput mass-spectrometry experiments, leading to an improved global map of human protein complexes.
SUBMITTER: Lugo-Martinez J
PROVIDER: S-EPMC7249224 | biostudies-literature | 2019 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA