Project description:Single-cell RNA sequencing (scRNA-seq) is currently one of the most powerful techniques available to study the transcriptional response of thousands of cells to an external perturbation. Here, we perform a pseudotime analysis of SARS-CoV-2 infection using publicly available scRNA-seq data from human bronchial epithelial cells and colon and ileum organoids. Our results reveal that, for most genes, the transcriptional response to SARS-CoV-2 infection follows a non-linear pattern characterized by an initial and a final down-regulatory phase separated by an intermediate up-regulatory stage. A correlation analysis of transcriptional profiles suggests a common mechanism regulating the mRNA levels of most genes. Interestingly, genes encoded in the mitochondria or involved in translation exhibited distinct pseudotime profiles. To explain our results, we propose a simple model where nuclear export inhibition of nsp1-sensitive transcripts will be sufficient to explain the transcriptional shutdown of SARS-CoV-2 infected cells.
Project description:Coronavirus disease-2019 (COVID-19) is a global pandemic and caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has resulted in millions of deaths worldwide. Reports denote SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2) as its primary entry point into the host cell. However, understanding the biology behind this viral replication, disease mechanism and drug discovery efforts are limited due to the lack of a suitable experimental model. Here, we used single-cell RNA sequencing data of human organoids to analyze expressions of ACE2 and TMPRSS2, in addition to an array of RNA receptors to examine their role in SARS-CoV-2 pathogenesis. ACE2 is abundant in all organoids, except the prostate and brain, and TMPRSS2 is omnipresent. Innate immune pathways are upregulated in ACE2(+) cells of all organoids, except the lungs. Besides this, the expression of low-density lipoprotein receptor is highly enriched in ACE2(+) cells in intestinal, lung, and retinal organoids, with the highest expression in lung organoids. Collectively, this study demonstrates that the organoids can be used as an experimental platform to explore this novel virus disease mechanism and for drug development.
Project description:Detailed knowledge about the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is important for uncovering the viral and host factors that contribute to coronavirus disease 2019 (COVID-19) pathogenesis. Old-World nonhuman primates recapitulate mild to moderate cases of COVID-19, thereby serving as important pathogenesis models. We compared African green monkeys inoculated with infectious SARS-CoV-2 or irradiated, inactivated virus to study the dynamics of virus replication throughout the respiratory tract. Genomic RNA from the animals inoculated with the irradiated virus was found to be highly stable, whereas subgenomic RNA, an indicator of viral replication, was found to degrade quickly. We combined this information with single-cell RNA sequencing of cells isolated from the lung and lung-draining mediastinal lymph nodes and developed new analysis methods for unbiased targeting of important cells in the host response to SARS-CoV-2 infection. Through detection of reads to the viral genome, we were able to determine that replication of the virus in the lungs appeared to occur mainly in pneumocytes, whereas macrophages drove the inflammatory response. Monocyte-derived macrophages recruited to the lungs, rather than tissue-resident alveolar macrophages, were most likely to be responsible for phagocytosis of infected cells and cellular debris early in infection, with their roles switching during clearance of infection. Together, our dataset provides a detailed view of the dynamics of virus replication and host responses over the course of mild COVID-19 and serves as a valuable resource to identify therapeutic targets.
Project description:Single cell RNA sequencing (scRNAseq) studies have provided critical insight into the pathogenesis of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), the causative agent of COronaVIrus Disease 2019 (COVID-19). scRNAseq workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. The performance of different scRNAseq methods to study SARS-CoV-2 RNAs has not been thoroughly evaluated. Here, we compare different scRNAseq methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs), which are produced only during active viral replication and not present in viral particles. We present a data processing strategy, single cell CoronaVirus sequencing (scCoVseq), which quantifies reads unambiguously assigned to sgmRNAs or genomic RNA (gRNA). Compared to standard 10X Genomics Chromium Next GEM Single Cell 3' (10X 3') and Chromium Next GEM Single Cell V(D)J (10X 5') sequencing, we find that 10X 5' with an extended R1 sequencing strategy maximizes the unambiguous detection of sgmRNAs by increasing the number of reads spanning leader-sgmRNA junction sites. Differential gene expression testing and KEGG enrichment analysis of infected cells compared with bystander or mock cells showed an enrichment for COVID19-associated genes, supporting the ability of our method to accurately identify infected cells. Our method allows for quantification of coronavirus sgmRNA expression at single-cell resolution, and thereby supports high resolution studies of the dynamics of coronavirus RNA synthesis.ImportanceSingle cell RNA sequencing (scRNAseq) has emerged as a valuable tool to study host-viral interactions particularly in the context of COronaVIrus Disease-2019 (COVID-19). scRNAseq has been developed and optimized for analyzing eukaryotic mRNAs, and the ability of scRNAseq to measure RNAs produced by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has not been fully characterized. Here we compare the performance of different scRNAseq methods to detect and quantify SARS-CoV-2 RNAs and develop an analysis workflow to specifically quantify unambiguous reads derived from SARS-CoV-2 genomic RNA and subgenomic mRNAs. Our work demonstrates the strengths and limitations of scRNAseq to measure SARS-CoV-2 RNA and identifies experimental and analytical approaches that allow for SARS-CoV-2 RNA detection and quantification. These developments will allow for studies of coronavirus RNA biogenesis at single-cell resolution to improve our understanding of viral pathogenesis.
Project description:Single-cell RNA sequencing (scRNA-Seq) studies have provided critical insight into the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). scRNA-Seq library preparation methods and data processing workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. Here, we compare different scRNA-Seq library preparation methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs). We show that compared to 10X Genomics Chromium Next GEM Single Cell 3' (10X 3') libraries or 10X Genomics Chromium Next GEM Single Cell V(D)J (10X 5') libraries sequenced with standard read configurations, 10X 5' libraries sequenced with an extended length read 1 (R1) that covers both cell barcode and transcript sequence (termed "10X 5' with extended R1") increase the number of unambiguous reads spanning leader-sgmRNA junction sites. We further present a data processing workflow, single-cell coronavirus sequencing (scCoVseq), which quantifies reads unambiguously assigned to viral sgmRNAs or viral genomic RNA (gRNA). We find that combining 10X 5' with extended R1 library preparation/sequencing and scCoVseq data processing maximizes the number of viral UMIs per cell quantified by scRNA-Seq. Corresponding sgmRNA expression levels are highly correlated with expression in matched bulk RNA-Seq data sets quantified with established tools for SARS-CoV-2 analysis. Using this scRNA-Seq approach, we find that SARS-CoV-2 gene expression is highly correlated across individual infected cells, which suggests that the proportion of viral sgmRNAs remains generally consistent throughout infection. Taken together, these results and corresponding data processing workflow enable robust quantification of coronavirus sgmRNA expression at single-cell resolution, thereby supporting high-resolution studies of viral RNA processes in individual cells. IMPORTANCE Single-cell RNA sequencing (scRNA-Seq) has emerged as a valuable tool to study host-virus interactions, especially for coronavirus disease 2019 (COVID-19). Here we compare the performance of different scRNA-Seq library preparation methods and sequencing strategies to detect SARS-CoV-2 RNAs and develop a data processing workflow to quantify unambiguous sequence reads derived from SARS-CoV-2 genomic RNA and subgenomic mRNAs. After establishing a workflow that maximizes the detection of SARS-CoV-2 subgenomic mRNAs, we explore patterns of SARS-CoV-2 gene expression across cells with variable levels of total viral RNA, assess host gene expression differences between infected and bystander cells, and identify non-canonical and lowly abundant SARS-CoV-2 RNAs. The sequencing and data processing strategies developed here can enhance studies of coronavirus RNA biology at single-cell resolution and thereby contribute to our understanding of viral pathogenesis.
Project description:While severe coronavirus 2019 (COVID-19) is associated with immune activation at the maternal-fetal interface, responses to asymptomatic/mild severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy remain unknown. Here, we assess immunological adaptations in blood and term decidua in response to asymptomatic/mild disease in pregnant women. We report attenuated antigen presentation and type I interferon (IFN) signaling pathways, loss of tissue-resident decidual macrophages, and upregulated cytokine/chemokine signaling in monocyte-derived decidual macrophages. Furthermore, we describe increased frequencies of activated tissue-resident T cells and decreased abundance of regulatory T cells with infection while frequencies of cytotoxic CD4/CD8 T cells are increased in the blood. In contrast to decidual macrophages, type I IFN signaling is higher in decidual T cells. Finally, infection leads to a narrowing of T cell receptor diversity in both blood and decidua. Collectively, these observations indicate that asymptomatic/mild COVID-19 during pregnancy results in remodeling of the immunological landscape of the maternal-fetal interface, with a potential for long-term adverse outcomes for the offspring.
Project description:BackgroundAngiotensin-converting enzyme 2 (ACE2) has been reported to be the main receptor for SARS-CoV-2 infection of host cells. Understanding the changes in bronchoalveolar epithelial cells after SARS-CoV-2 infection of host cells and the intercellular communication relationship between these epithelial cell changes and immune cells is of great significance for the development of therapeutic methods.MethodsWe explored the single-cell RNA sequence (scRNA-seq) of cells infected with bronchoalveolar lavage fluid (BaLF) of patients with different severities of SARS-CoV-2 and healthy people.ResultsWe found 11 clusters of epithelial cells in the BaLF, and they were derived from the S group. In the S group, the proportion of cells with positive ACE2 expression was relatively high. ACE2 was relatively more expressed in epithelial cell clusters 1, 3, and 7. Clusters 4 and 5 represented the original state, and there were two differentiation directions: one was cluster 2, and the others were clusters 1, 3, and 6. Cluster 7 was the intermediate state. Clusters 1, 3, 6, and 7 had high similarities (> 0.9), and their main signaling pathways focused on inflammatory activation and immune response. Cluster 2 was relatively specific and was up-regulated in differential genes that were mainly related to apoptosis. The ligand-receptor expression pattern of TNFRSF10D-TNFSF10 showed a special inter-cell regulatory relationship between epithelial cell cluster 2 and macrophages.ConclusionThis study revealed the changes in epithelial cells derived from alveolar lavage fluid after SARS-CoV-2 infection and the communication relationship with other immune cells.
Project description:Gaining a better understanding of the immune cell subsets and molecular factors associated with protective or pathological immunity against severe acute respiratory syndrome coronavirus (SARS-CoV)-2 could aid the development of vaccines and therapeutics for coronavirus disease 2019 (COVID-19). Single-cell technologies, such as flow cytometry, mass cytometry, single-cell transcriptomics and single-cell multi-omic profiling, offer considerable promise in dissecting the heterogeneity of immune responses among individual cells and uncovering the molecular mechanisms of COVID-19 pathogenesis. Single-cell immune-profiling studies reported to date have identified innate and adaptive immune cell subsets that correlate with COVID-19 disease severity, as well as immunological factors and pathways of potential relevance to the development of vaccines and treatments for COVID-19. For facilitation of integrative studies and meta-analyses into the immunology of SARS-CoV-2 infection, we provide standardized, download-ready versions of 21 published single-cell sequencing datasets (over 3.2 million cells in total) as well as an interactive visualization portal for data exploration.