Ontology highlight
ABSTRACT: Importance
Single cell RNA sequencing (scRNAseq) has emerged as a valuable tool to study host-viral interactions particularly in the context of COronaVIrus Disease-2019 (COVID-19). scRNAseq has been developed and optimized for analyzing eukaryotic mRNAs, and the ability of scRNAseq to measure RNAs produced by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has not been fully characterized. Here we compare the performance of different scRNAseq methods to detect and quantify SARS-CoV-2 RNAs and develop an analysis workflow to specifically quantify unambiguous reads derived from SARS-CoV-2 genomic RNA and subgenomic mRNAs. Our work demonstrates the strengths and limitations of scRNAseq to measure SARS-CoV-2 RNA and identifies experimental and analytical approaches that allow for SARS-CoV-2 RNA detection and quantification. These developments will allow for studies of coronavirus RNA biogenesis at single-cell resolution to improve our understanding of viral pathogenesis.
SUBMITTER: Cohen P
PROVIDER: S-EPMC8629185 | biostudies-literature | 2021 Nov
REPOSITORIES: biostudies-literature
bioRxiv : the preprint server for biology 20230223
Single cell RNA sequencing (scRNA-Seq) studies have provided critical insight into the pathogenesis of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), the causative agent of COronaVIrus Disease 2019 (COVID-19). scRNA-Seq workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. Here, we compare different scRNA-Seq methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs). We p ...[more]