Unknown

Dataset Information

0

PRMT7 regulates RNA-binding capacity and protein stability in Leishmania parasites.


ABSTRACT: RNA binding proteins (RBPs) are the primary gene regulators in kinetoplastids as transcriptional control is nearly absent, making Leishmania an exceptional model for investigating methylation of non-histone substrates. Arginine methylation is an evolutionarily conserved protein modification catalyzed by Protein aRginine Methyl Transferases (PRMTs). The chromatin modifier PRMT7 is the only Type III PRMT found in higher eukaryotes and a restricted number of unicellular eukaryotes. In Leishmania major, PRMT7 is a cytoplasmic protein implicit in pathogenesis with unknown substrates. Using comparative methyl-SILAC proteomics for the first time in protozoa, we identified 40 putative targets, including 17 RBPs hypomethylated upon PRMT7 knockout. PRMT7 can modify Alba3 and RBP16 trans-regulators (mammalian RPP25 and YBX2 homologs, respectively) as direct substrates in vitro. The absence of PRMT7 levels in vivo selectively reduces Alba3 mRNA-binding capacity to specific target transcripts and can impact the relative stability of RBP16 in the cytoplasm. RNA immunoprecipitation analyses demonstrate PRMT7-dependent methylation promotes Alba3 association with select target transcripts and thus indirectly stabilizes mRNA of a known virulence factor, ?-amastin surface antigen. These results highlight a novel role for PRMT7-mediated arginine methylation of RBP substrates, suggesting a regulatory pathway controlling gene expression and virulence in Leishmania. This work introduces Leishmania PRMTs as epigenetic regulators of mRNA metabolism with mechanistic insight into the functional manipulation of RBPs by methylation.

SUBMITTER: Ferreira TR 

PROVIDER: S-EPMC7261171 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

PRMT7 regulates RNA-binding capacity and protein stability in Leishmania parasites.

Ferreira Tiago R TR   Dowle Adam A AA   Parry Ewan E   Alves-Ferreira Eliza V C EVC   Hogg Karen K   Kolokousi Foteini F   Larson Tony R TR   Plevin Michael J MJ   Cruz Angela K AK   Walrad Pegine B PB  

Nucleic acids research 20200601 10


RNA binding proteins (RBPs) are the primary gene regulators in kinetoplastids as transcriptional control is nearly absent, making Leishmania an exceptional model for investigating methylation of non-histone substrates. Arginine methylation is an evolutionarily conserved protein modification catalyzed by Protein aRginine Methyl Transferases (PRMTs). The chromatin modifier PRMT7 is the only Type III PRMT found in higher eukaryotes and a restricted number of unicellular eukaryotes. In Leishmania ma  ...[more]

Similar Datasets

| S-EPMC3542153 | biostudies-literature
| S-EPMC5735676 | biostudies-literature
| S-EPMC5748460 | biostudies-literature
| S-EPMC2929996 | biostudies-literature
| S-EPMC3006324 | biostudies-literature
| S-EPMC102622 | biostudies-literature
| S-EPMC4403190 | biostudies-literature
| S-EPMC2504296 | biostudies-literature
| S-EPMC5397167 | biostudies-literature
2021-06-07 | ST001822 | MetabolomicsWorkbench